In this paper, we generalize the context of the Mazur-Tate conjecture and sharpen, in a certain way, the statement of the conjecture. Our main result will be to establish the truth of a part of these new sharpened conjectures, provided that one assume the truth of the classical Birch and Swinnerton-Dyer conjectures. This is particularly striking in the function field case, where these results can be viewed as being a refinement of the earlier work of Tate and Milne.
Dans cet article nous généralisons le contexte de la conjecture de Mazur-Tate et dans une certaine mesure en donnons un énoncé plus fin. Nous prouvons ces nouvelles conjectures en supposant vraies les conjectures classiques de Birch et Swinnerton-Dyer. Ceci est remarquable dans le cas du corps des fonctions où ces résultats constituent une amélioration de travaux antérieurs de Tate et Milne.
@article{AIF_1995__45_2_317_0,
author = {Tan, Ki-Seng},
title = {Refined theorems of the {Birch} and {Swinnerton-Dyer} type},
journal = {Annales de l'Institut Fourier},
pages = {317--374},
year = {1995},
publisher = {Association des Annales de l'Institut Fourier},
volume = {45},
number = {2},
doi = {10.5802/aif.1457},
mrnumber = {96j:11089},
zbl = {0821.11036},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1457/}
}
TY - JOUR AU - Tan, Ki-Seng TI - Refined theorems of the Birch and Swinnerton-Dyer type JO - Annales de l'Institut Fourier PY - 1995 SP - 317 EP - 374 VL - 45 IS - 2 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1457/ DO - 10.5802/aif.1457 LA - en ID - AIF_1995__45_2_317_0 ER -
%0 Journal Article %A Tan, Ki-Seng %T Refined theorems of the Birch and Swinnerton-Dyer type %J Annales de l'Institut Fourier %D 1995 %P 317-374 %V 45 %N 2 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1457/ %R 10.5802/aif.1457 %G en %F AIF_1995__45_2_317_0
Tan, Ki-Seng. Refined theorems of the Birch and Swinnerton-Dyer type. Annales de l'Institut Fourier, Tome 45 (1995) no. 2, pp. 317-374. doi: 10.5802/aif.1457
[AT] and , Class Field Theory, Benjamin, New York, 1967. | Zbl
[BS] and , Number Theorey, English translation, Academic Press, New York, 1966. | Zbl
[D] , Les constants, etc., Séminaire Delange-Poisot-Poitou, 11e année 19, 1970. | Zbl | Numdam
[G] , On the value of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 35 (1988), 177-197. | Zbl | MR
[GSt] and , p-adic L-functions and p-adic modular forms, Invent. Math., 111 (1993), 407-447. | Zbl | MR
[K] , Multiplicative independence in function fields, J. Number Theory, 44 (1993), 352-355. | Zbl | MR
[L] , Algebraic Number Theory, Graduate Texts in Mathematics, Vol. 110, Springer-Verlag, New York, 1986. | Zbl | MR
[M] , Letter to J. Tate, 1987.
[Ml1] , On a conjecture of Artin and Tate, Annals of Math., 102 (1975), 517-533. | Zbl | MR
[Ml2] , Arithmetic Duality Theorems, Academic Press, New York, 1986. | Zbl | MR
[Mu] , Biextensions of formal groups, in the Proceedings of the Bombay Colloquium on Algebraic Geometry, Tata Institute of Fundamental Research Studies in Mathematics 4, London, Oxford University Press, 1968.
[MT1] and , Canonical pairing via biextensions, in Arithmetic and Geometry, Progr. Math., Vol. 35 (1983), 195-237, Birkhäuser, Boston-Basel-Stuttgart. | Zbl | MR
[MT2] and , Refined conjectures of the Birch and Swinnerton-Dyer type, Duke Math. J., 54/2 (1987), 711-750. | Zbl | MR
[MTT] , and , On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84 (1986), 1-84. | Zbl | MR
[PV] and , The associated graded ring of an integral group ring, Math. Proc. Camb. Phil. Soc., 82 (1977), 25-33. | Zbl | MR
[S] , Arithmetic of Elliptic Curves, Graduate Texts in Math., Vol. 106, Springer-Verlag, New York, 1986. | Zbl | MR
[GA7 I] et al., Séminaire de géométrie algébrique du Bois Marie, 1967/1969, Groupes de monodromie en géométrie algébrique, Lecture Notes in mathematics 288, Springer, Berlin-Heidelberg-New York, 1972. | Zbl
[T1] , Duality theorems in Galois cohomology over number fields, in Proc. Intern. Congress Math., Stockholm (1962), 231-241. | Zbl
[T2] , On the conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Séminaire Bourbaki n° 306 (1966). | Zbl | Numdam
[T3] , The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206. | Zbl | MR
[T4] , Letter to B. Mazur, 1988.
[T5] , Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Functions of One Variable IV, Lecture Notes in Math. 476 (1975), p. 33-53, Springer-Verlag, Berlin-Heidelberg-New York.
[Tn1] , Refined conjectures of the Birch and Swinnerton-Dyer Type, Harvard University, Dept. of Mathematics, Ph. D. Thesis, 1990.
[Tn2] , Modular elements over function fields, Journal of Number Theory, 45 (1993, n° 3), 295-311. | Zbl | MR
[Tn3] , On the p-adic height pairings, AMS Proceedings on the p-adic Monodromy, to appear.
[Tn4] , On the special values of abelian L-function, submitted to J. Fac. Sci. Univ. Tokyo. | Zbl
[W1] , Basic Number Theory, Grundl. Math. Wiss. Bd. 144, Springer-Verlag, New York, 1967. | Zbl
[W2] , Adèles and Algebraic Groups, Birkhauser, Boston, 1982.
[Z] , Néron pairing and quasicharacters, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (3), 497-509, 1972. (Math. USSR Izvestija, Vol. 6, No. 3, 491-503). | Zbl
Cité par Sources :





