We show that there exists a complete minimal surface immersed into which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is .
Nous montrons l’existence d’une surface minimale complète dans l’espace , conformément équivalente à une surface de Riemann hyperelliptique compacte de genre trois moins un point; son bout est de type Enneper et sa courbure totale est .
@article{AIF_1994__44_2_525_0,
author = {Do Espirito Santo, Nedir},
title = {Complete minimal surfaces in ${\mathbb {R}}^3$ with type {Enneper} end},
journal = {Annales de l'Institut Fourier},
pages = {525--557},
year = {1994},
publisher = {Association des Annales de l'Institut Fourier},
volume = {44},
number = {2},
doi = {10.5802/aif.1408},
mrnumber = {95h:53008},
zbl = {0803.53006},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1408/}
}
TY - JOUR
AU - Do Espirito Santo, Nedir
TI - Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end
JO - Annales de l'Institut Fourier
PY - 1994
SP - 525
EP - 557
VL - 44
IS - 2
PB - Association des Annales de l'Institut Fourier
UR - https://www.numdam.org/articles/10.5802/aif.1408/
DO - 10.5802/aif.1408
LA - en
ID - AIF_1994__44_2_525_0
ER -
%0 Journal Article
%A Do Espirito Santo, Nedir
%T Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end
%J Annales de l'Institut Fourier
%D 1994
%P 525-557
%V 44
%N 2
%I Association des Annales de l'Institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1408/
%R 10.5802/aif.1408
%G en
%F AIF_1994__44_2_525_0
Do Espirito Santo, Nedir. Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end. Annales de l'Institut Fourier, Tome 44 (1994) no. 2, pp. 525-557. doi: 10.5802/aif.1408
[CG], , Elliptische und Hyperelliptische Funktionen und Vollständige Minimalflächen von Enneperschen Typ, Math. Ann., 259 (1982), 359-369. | Zbl | MR | EuDML
[GP], Introduction to Algebraic Curves, Providence, AMS, 1989. | MR | Zbl
[H], On subharmonic Functions and Differential Geometry in the Large, Comment Math. Helv., 32 (1957), 13-72. | Zbl | MR | EuDML
[JM], , III The Topology of Complete Minimal Surfaces of Finite Total Gaussian Curvature, Topology, 22 (1983), 203-221. | Zbl | MR
[K], Construction of Minimal Surfaces, Surveys in Geometry, University of Tokyo 1989, p. 1-96, and Lecture Notes 12, SFB256, Bonn, 1989.
[O], A Survey of Minimal Surfaces, van Nostrand Reinhold Company, 1969. | Zbl | MR
Cité par Sources :





