L p Carleman estimates for elliptic boundary value problems and applications to the quantification of unique continuation
[Estimées de Carleman L p pour des problèmes aux limites elliptiques et applications à la quantification du prolongement unique]
Annales Henri Lebesgue, Tome 7 (2024), pp. 1603-1668

The aim of this work is to prove global L p Carleman estimates for the Laplace operator in dimension d3. Our strategy relies on precise Carleman estimates in strips and a suitable gluing of local and boundary estimates obtained through a change of variables. The delicate point and most of the work thus consists in proving Carleman estimates in the strip with a linear weight function for a second-order operator with coefficients depending linearly on the normal variable. This is done by constructing an explicit parametrix for the conjugated operator, which is estimated through the use of Stein–Tomas restriction theorems. As an application, we deduce quantified versions of the unique continuation property for solutions of Δu=Vu+W 1 ·u+÷(W 2 u) in terms of the norms of V in L q 0 (Ω), of W 1 in L q 1 (Ω) and of W 2 in L q 2 (Ω) for q 0 (d 2,] and q 1 and q 2 satisfying either q 1 ,q 2 >3d-2 2 and 1 q 1 +1 q 2 <4(1-1 d)/(3d-2), or q 1 ,q 2 >3d 2.

L’objectif de ce travail est de démontrer des estimations de Carleman L p globales pour l’opérateur Laplacien en dimension d3. Notre stratégie repose sur des estimations de Carleman sur des bandes puis un recollement approprié des estimations locales et au bord obtenues grâce à un changement de variables. L’essentiel du travail consiste à prouver des estimations de Carleman dans la bande avec une fonction poids linéaire pour un opérateur du second ordre à coefficients dépendant linéairement de la variable normale. Cela est réalisé par la construction d’une paramétrice explicite pour l’opérateur conjugué, qui est estimée grâce à l’utilisation des théorèmes de restriction de Stein–Tomas. En application, nous déduisons des versions quantifiées de la propriété de prolongement unique pour les solutions de Δu=Vu+W 1 ·u+÷(W 2 u) en termes des normes de V dans L q 0 (Ω), de W 1 dans L q 1 (Ω) et de W 2 dans L q 2 (Ω) pour q 0 (d 2,] et q 1 et q 2 satisfaisant soit q 1 ,q 2 >3d-2 2 et 1 q 1 +1 q 2 <4(1-1 d)/(3d-2), soit q 1 ,q 2 >3d 2.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.226
Classification : 35BXX, 35J25, 35B60, 35R05
Keywords: Carleman estimates, boundary value problem, elliptic equations, Fourier restriction theorems

Dehman, Belhassen  1   ; Ervedoza, Sylvain  2   ; Thabouti, Lotfi  3 , 4

1 Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 El Manar & Ecole Nationale d’Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis (Tunisia)
2 Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, CNRS, Bordeaux INP, F-33400 Talence (France)
3 Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, CNRS, Bordeaux INP, F-33400 Talence(France)
4 Département de mathématiques, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 El Manar & Ecole Nationale d’Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis (Tunisia)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__1603_0,
     author = {Dehman, Belhassen and Ervedoza, Sylvain and Thabouti, Lotfi},
     title = {$L^p$ {Carleman} estimates for elliptic boundary value problems and applications to the quantification of unique continuation},
     journal = {Annales Henri Lebesgue},
     pages = {1603--1668},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.226},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.226/}
}
TY  - JOUR
AU  - Dehman, Belhassen
AU  - Ervedoza, Sylvain
AU  - Thabouti, Lotfi
TI  - $L^p$ Carleman estimates for elliptic boundary value problems and applications to the quantification of unique continuation
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 1603
EP  - 1668
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.226/
DO  - 10.5802/ahl.226
LA  - en
ID  - AHL_2024__7__1603_0
ER  - 
%0 Journal Article
%A Dehman, Belhassen
%A Ervedoza, Sylvain
%A Thabouti, Lotfi
%T $L^p$ Carleman estimates for elliptic boundary value problems and applications to the quantification of unique continuation
%J Annales Henri Lebesgue
%D 2024
%P 1603-1668
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.226/
%R 10.5802/ahl.226
%G en
%F AHL_2024__7__1603_0
Dehman, Belhassen; Ervedoza, Sylvain; Thabouti, Lotfi. $L^p$ Carleman estimates for elliptic boundary value problems and applications to the quantification of unique continuation. Annales Henri Lebesgue, Tome 7 (2024), pp. 1603-1668. doi: 10.5802/ahl.226

[ABG81] Amrein, Werner O.; Berthier, Anne-Marie; Georgescu, Vladimir L p -inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier, Volume 31 (1981) no. 3, pp. 153-168 | DOI | Zbl | MR

[ABZ17] Alazard, Thomas; Burq, Nicolas; Zuily, Claude A stationary phase type estimate, Proc. Am. Math. Soc., Volume 145 (2017) no. 7, pp. 2871-2880 | DOI | Zbl | MR

[BF12] Boyer, Franck; Fabrie, Pierre Mathematical tools for the study of the incompressible Navier–Stokes equations and related models, Applied Mathematical Sciences, 183, Springer, 2012 | DOI | Zbl | MR

[BKRS88] Barcelo, Bartolomé; Kenig, Carlos E.; Ruiz, Alberto; Sogge, Christopher D. Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms, Ill. J. Math., Volume 32 (1988) no. 2, pp. 230-245 | Zbl | MR

[Dav20] Davey, Blair Quantitative unique continuation for Schrödinger operators, J. Funct. Anal., Volume 279 (2020) no. 4, 108566, 22 pages | DOI | Zbl | MR

[DE23] Dardé, Jérémi; Ervedoza, Sylvain A short introduction to Carleman estimates, Control of Partial Differential Equations (Series in Contemporary Applied Mathematics), Volume 24, World Scientific, 2023, pp. 1-79 | DOI

[DSF05] Dos Santos Ferreira, David Sharp L p Carleman estimates and unique continuation, Duke Math. J., Volume 129 (2005) no. 3, pp. 503-550 | DOI | Zbl | MR

[DZ19] Davey, Blair; Zhu, Jiuyi Quantitative uniqueness of solutions to second-order elliptic equations with singular lower order terms, Commun. Partial Differ. Equations, Volume 44 (2019) no. 11, pp. 1217-1251 | DOI | Zbl | MR

[DZZ08] Duyckaerts, Thomas; Zhang, Xu; Zuazua, Enrique On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008) no. 1, pp. 1-41 | DOI | Zbl | Numdam | MR

[FI96] Fursikov, Andreĭ V.; Imanuvilov, Oleg Yu. Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, 1996 | Zbl | MR

[Hör83] Hörmander, Lars Uniqueness theorems for second order elliptic differential equations, Commun. Partial Differ. Equations, Volume 8 (1983) no. 1, pp. 21-64 | DOI | Zbl | MR

[Hör90] Hörmander, Lars The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1990 | DOI | Zbl | MR

[Hör94] Hörmander, Lars The analysis of linear partial differential operators. IV, Classics in Mathematics, Springer, 1994 | DOI | Zbl | MR

[IP03] Imanuvilov, Oleg Yu.; Puel, Jean-Pierre Global Carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems, Int. Math. Res. Not., Volume 2003 (2003) no. 16, pp. 883-913 | MR | DOI | Zbl

[Jer86] Jerison, David Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. Math., Volume 62 (1986) no. 2, pp. 118-134 | DOI | Zbl

[JK85] Jerison, David; Kenig, Carlos E. Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math., Volume 121 (1985) no. 3, pp. 463-488 | DOI | Zbl

[KRS87] Kenig, Carlos E.; Ruiz, Alberto; Sogge, Christopher D. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., Volume 55 (1987) no. 2, pp. 329-347 | DOI | Zbl | MR

[KT01] Koch, Herbert; Tataru, Daniel Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | Zbl | DOI | MR

[KT02] Koch, Herbert; Tataru, Daniel Sharp counterexamples in unique continuation for second order elliptic equations, J. Reine Angew. Math., Volume 542 (2002), pp. 133-146 | DOI | Zbl | MR

[KT05] Koch, Herbert; Tataru, Daniel Dispersive estimates for principally normal pseudodifferential operators, Pure Appl. Math., Volume 58 (2005) no. 2, pp. 217-284 | DOI | Zbl | MR

[LRL13] Le Rousseau, Jérôme; Lerner, Nicolas Carleman estimates for anisotropic elliptic operators with jumps at an interface, Anal. PDE, Volume 6 (2013) no. 7, pp. 1601-1648 | DOI | Zbl | MR

[LRLR22] Le Rousseau, Jérôme; Lebeau, Gilles; Robbiano, Luc Elliptic Carleman estimates and applications to stabilization and controllability. Vol. I. Dirichlet boundary conditions on Euclidean space, Progress in Nonlinear Differential Equations and their Applications, 97, Birkhäuser, 2022 | DOI | Zbl | MR

[MV12] Malinnikova, Eugenia; Vessella, Sergio Quantitative uniqueness for elliptic equations with singular lower order terms, Math. Ann., Volume 353 (2012) no. 4, pp. 1157-1181 | DOI | Zbl | MR

[Sog88] Sogge, Christopher D. Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-138 | DOI | Zbl | MR

[Sog89] Sogge, Christopher D. Oscillatory integrals and unique continuation for second order elliptic differential equations, J. Am. Math. Soc., Volume 2 (1989) no. 3, pp. 491-515 | DOI | Zbl | MR

[Sog90] Sogge, Christopher D. Strong uniqueness theorems for second order elliptic differential equations, Am. J. Math., Volume 112 (1990) no. 6, pp. 943-984 | DOI | Zbl | MR

[Sog17] Sogge, Christopher D. Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 210, Cambridge University Press, 2017 | DOI | Zbl | MR

[Ste70] Stein, Elias M. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970 | Zbl | MR

[Ste93] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 3, Princeton University Press, 1993 | Zbl | MR

[Tom75] Tomas, Peter A. A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975) no. 1, pp. 477-478 | DOI | Zbl | MR

[Wol92] Wolff, Thomas H. A property of measures in N and an application to unique continuation, Geom. Funct. Anal., Volume 2 (1992) no. 2, pp. 225-284 | DOI | Zbl | MR

[Wol93] Wolff, Thomas H. Recent work on sharp estimates in second-order elliptic unique continuation problems, J. Geom. Anal., Volume 3 (1993) no. 6, pp. 621-650 | DOI | Zbl | MR

Cité par Sources :