A few remarks on the transport-Stokes system
[Quelques remarques sur le système de Transport-Stokes]
Annales Henri Lebesgue, Tome 7 (2024), pp. 1367-1408

We consider the so-called transport-Stokes system which describes sedimentation of inertialess suspensions in a viscous flow and couples a transport equation and the steady Stokes equations in the full three-dimensional space. First we present a global existence and uniqueness result for L 1 L p initial densities where p3. Secondly, we prove that, in the case where p>3, the flow map which describes the trajectories of these solutions is analytic with respect to time. Finally we establish the small-time global exact controllability of the transport-Stokes system. These results extend to the transport-Stokes system some results obtained for the incompressible Euler system respectively by Yudovich in [Yud63], by Chemin in [Che92, Che95] and by Coron, and Glass, in [Cor96, Gla00].

Nous considérons le système de transport-Stokes décrivant la sédimentation de particules sans inertie dans un écoulement visqueux et couplant une équation de transport aux équations stationnaires de Stokes dans l’espace tridimensionnel complet. Nous présentons d’abord un résultat global d’existence et d’unicité pour des densités initiales L 1 L p p3. Deuxièmement, dans le cas où p>3, nous démontrons l’analyticité des trajectoires par rapport au temps. Enfin, nous établissons la contrôlabilité exacte globale à temps court du système de transport-Stokes. Ces résultats étendent au système transport-Stokes certains résultats obtenus pour le système d’Euler incompressible respectivement par Yudovich dans [Yud63], par Chemin dans [Che92, Che95] et par Coron et Glass, dans [Cor96, Gla00].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.222
Classification : 76D07, 35Q49, 76T20, 35A01, 35A20, 93B05
Keywords: Stokes flow, transport equation, Suspensions, global existence and uniqueness results for PDEs, Analyticity, controllability

Mecherbet, Amina  1   ; Sueur, Franck  2

1 Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Cité, 8 Place Aurélie Nemours, F75205 Paris Cedex 13 (France)
2 Department of Mathematics Maison du nombre, 6 avenue de la Fonte, University of Luxembourg, L-4364 Esch-sur-Alzette (Luxembourg)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__1367_0,
     author = {Mecherbet, Amina and Sueur, Franck},
     title = {A few remarks on the {transport-Stokes} system},
     journal = {Annales Henri Lebesgue},
     pages = {1367--1408},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.222},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.222/}
}
TY  - JOUR
AU  - Mecherbet, Amina
AU  - Sueur, Franck
TI  - A few remarks on the transport-Stokes system
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 1367
EP  - 1408
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.222/
DO  - 10.5802/ahl.222
LA  - en
ID  - AHL_2024__7__1367_0
ER  - 
%0 Journal Article
%A Mecherbet, Amina
%A Sueur, Franck
%T A few remarks on the transport-Stokes system
%J Annales Henri Lebesgue
%D 2024
%P 1367-1408
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.222/
%R 10.5802/ahl.222
%G en
%F AHL_2024__7__1367_0
Mecherbet, Amina; Sueur, Franck. A few remarks on the transport-Stokes system. Annales Henri Lebesgue, Tome 7 (2024), pp. 1367-1408. doi: 10.5802/ahl.222

[BCD11] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, Springer, 2011 | DOI | Zbl | MR

[CCS21] Ciampa, Gennaro; Crippa, Gianluca; Spirito, Stefano Strong convergence of the vorticity for the 2D Euler equations in the inviscid limit, Arch. Ration. Mech. Anal., Volume 240 (2021) no. 1, pp. 295-326 | DOI | Zbl | MR

[Che92] Chemin, Jean-Yves Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl., Volume 71 (1992) no. 5, pp. 407-417 | Zbl | MR

[Che95] Chemin, Jean-Yves Fluides parfaits incompressibles, Astérisque, 230, Société Mathématique de France, 1995 | Zbl

[Cob23] Cobb, Dmitri On the well-posedness of a fractional Stokes-transport system (2023) | arXiv

[Cor96] Coron, Jean-Michel On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl., Volume 75 (1996) no. 2, pp. 155-188 | Zbl | MR

[CVW15] Constantin, Peter; Vicol, Vlad; Wu, Jiahong Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models, Adv. Math., Volume 285 (2015), pp. 352-393 | DOI | Zbl | MR

[Dob79] Dobrushin, Roland L’vovich Vlasov equations, Funct. Anal. Appl., Volume 13 (1979), pp. 115-123 | DOI | Zbl

[Fra00] Fraenkel, Ludwig E. An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, 128, Cambridge University Press, 2000 | Zbl | MR

[FZ14] Frisch, Uriel; Zheligovsky, Vladislav A very smooth ride in a rough sea, Commun. Math. Phys., Volume 326 (2014) no. 2, pp. 499-505 | DOI | Zbl | MR

[Gal11] Galdi, Giovanni P. An introduction to the mathematical theory of the Navier–Stokes equations, Springer Monographs in Mathematics, 38, Springer, 2011 | DOI | Zbl | MR

[Gam94] Gamblin, Pascal Incompressible Euler system and analytic microlocal regularity, Ann. Inst. Fourier, Volume 44 (1994), pp. 1449-1475 | DOI | Zbl | MR

[GH10] Glass, Olivier; Horsin, Thierry Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, J. Math. Pures Appl., Volume 93 (2010) no. 1, pp. 61-90 | DOI | Zbl | MR

[GH12] Glass, Olivier; Horsin, Thierry Prescribing the motion of a set of particles in a three-dimensional perfect fluid, SIAM J. Control Optim., Volume 50 (2012) no. 5, pp. 2726-2742 | DOI | Zbl | MR

[GH16] Glass, Olivier; Horsin, Thierry Lagrangian controllability at low Reynolds number, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1040-1053 | DOI | Zbl | MR | Numdam

[Gla00] Glass, Olivier Exact boundary controllability of 3-D Euler equation, ESAIM, Control Optim. Calc. Var., Volume 5 (2000), pp. 1-44 | DOI | Zbl | MR | Numdam

[Gla12] Glass, Olivier Some questions of control in fluid mechanics, Control of Partial Differential Equations (Lecture Notes in Mathematics), Volume 2048, Springer, 2012, pp. 131-206 | DOI | MR

[Gra23] Grayer, Hezekiah II Dynamics of density patches in infinite Prandtl number convection, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 4, 69 | DOI | Zbl | MR

[GS12] Glass, Olivier; Sueur, Franck On the motion of a rigid body in a two-dimensional irregular ideal flow, Flow, Volume 44 (2012) no. 5, pp. 3101-3126 | DOI | Zbl

[GST12] Glass, Olivier; Sueur, Franck; Takahashi, Takéo Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 1, pp. 1-51 | Zbl | DOI | MR | Numdam

[Hau09] Hauray, Maxime Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 8, pp. 1357-1384 | DOI | Zbl | MR

[HK17] Horsin, Thierry; Kavian, Otared Lagrangian controllability of inviscid incompressible fluids: a constructive approach, ESAIM, Control Optim. Calc. Var., Volume 23 (2017) no. 3, pp. 1179-1200 | DOI | Zbl | MR | Numdam

[HKM24] Han-Kwan, Daniel; Michel, David On hydrodynamic limits of the Vlasov–Navier–Stokes system, Memoirs of the American Mathematical Society, 1516, American Mathematical Society, 2024 | DOI

[HS21] Höfer, Richard M.; Schubert, Richard The influence of Einstein’s effective viscosity on sedimentation at very small particle volume fraction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1897-1927 | DOI | Zbl | MR | Numdam

[Höf18] Höfer, Richard M. Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., Volume 360 (2018) no. 1, pp. 55-101 | DOI | Zbl | MR

[Inc16] Inci, Hasan On a Lagrangian formulation of the incompressible Euler equation, Differ. Equ., Volume 29 (2016) no. 4, pp. 320-359 | DOI | Zbl

[Kat00] Kato, Tosio On the smoothness of trajectories in incompressible perfect fluids, Nonlinear wave equations (Contemporary Mathematics), Volume 263, American Mathematical Society, 2000, pp. 109-130 | Zbl | DOI

[Leb22] Leblond, Antoine Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip, J. Math. Pures Appl., Volume 158 (2022), pp. 120-143 | DOI | Zbl | MR

[Lio96] Lions, Pierre-Louis Mathematical topics in fluid mechanics. Vol. 1: Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3, Oxford University Press, 1996 | Zbl | MR

[Loe06] Loeper, Grégoire Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006) no. 1, pp. 68-79 | DOI | Zbl | MR

[Mec19] Mecherbet, Amina Sedimentation of particles in Stokes flow, Kinet. Relat. Models, Volume 12 (2019) no. 5, pp. 995-1044 | DOI | Zbl | MR

[Mec21] Mecherbet, Amina On the sedimentation of a droplet in Stokes flow, Commun. Math. Sci., Volume 19 (2021) no. 6, pp. 1627-1654 | DOI | MR

[Mio16] Miot, Evelyne A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | Zbl | MR

[San14] Santambrogio, Filippo Introduction to optimal transport theory, Optimal transport. Theory and applications (London Mathematical Society Lecture Note Series), Volume 413, London Mathematical Society, 2014, pp. 3-21 | Zbl | DOI

[San15] Santambrogio, Filippo Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progress in Nonlinear Differential Equations and their Applications, 87, Birkhäuser; Springer, 2015 | DOI | Zbl | MR

[Ser95] Serfati, Philippe Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., Volume 74 (1995) no. 2, pp. 95-104 | Zbl | MR

[Ser20] Serfaty, Sylvia Mean field limit for Coulomb-type flows, Duke Math. J., Volume 169 (2020) no. 15, pp. 2887-2935 | DOI | Zbl | MR

[Shn12] Shnirelman, Alexander I. On the Analyticity of Particle Trajectories in the Ideal Incompressible Fluid, Glob. Stoch. Anal., Volume 2 (2012) no. 1, pp. 149-157 | Zbl

[Sue11] Sueur, Franck Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain, J. Differ. Equations, Volume 251 (2011) no. 12, pp. 3421-3449 | DOI | Zbl | MR

[Yud63] Yudovich, Viktor Iosifovich Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 1032-1066 (also published in U.S.S.R. Comput. Math. and Math. Phys., 3, pp. 1407–1456) | Zbl | MR

Cité par Sources :