[Quelques remarques sur le système de Transport-Stokes]
We consider the so-called transport-Stokes system which describes sedimentation of inertialess suspensions in a viscous flow and couples a transport equation and the steady Stokes equations in the full three-dimensional space. First we present a global existence and uniqueness result for initial densities where . Secondly, we prove that, in the case where , the flow map which describes the trajectories of these solutions is analytic with respect to time. Finally we establish the small-time global exact controllability of the transport-Stokes system. These results extend to the transport-Stokes system some results obtained for the incompressible Euler system respectively by Yudovich in [Yud63], by Chemin in [Che92, Che95] and by Coron, and Glass, in [Cor96, Gla00].
Nous considérons le système de transport-Stokes décrivant la sédimentation de particules sans inertie dans un écoulement visqueux et couplant une équation de transport aux équations stationnaires de Stokes dans l’espace tridimensionnel complet. Nous présentons d’abord un résultat global d’existence et d’unicité pour des densités initiales où . Deuxièmement, dans le cas où , nous démontrons l’analyticité des trajectoires par rapport au temps. Enfin, nous établissons la contrôlabilité exacte globale à temps court du système de transport-Stokes. Ces résultats étendent au système transport-Stokes certains résultats obtenus pour le système d’Euler incompressible respectivement par Yudovich dans [Yud63], par Chemin dans [Che92, Che95] et par Coron et Glass, dans [Cor96, Gla00].
Révisé le :
Accepté le :
Publié le :
Keywords: Stokes flow, transport equation, Suspensions, global existence and uniqueness results for PDEs, Analyticity, controllability
Mecherbet, Amina  1 ; Sueur, Franck  2
CC-BY 4.0
@article{AHL_2024__7__1367_0,
author = {Mecherbet, Amina and Sueur, Franck},
title = {A few remarks on the {transport-Stokes} system},
journal = {Annales Henri Lebesgue},
pages = {1367--1408},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.222},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.222/}
}
Mecherbet, Amina; Sueur, Franck. A few remarks on the transport-Stokes system. Annales Henri Lebesgue, Tome 7 (2024), pp. 1367-1408. doi: 10.5802/ahl.222
[BCD11] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, Springer, 2011 | DOI | Zbl | MR
[CCS21] Strong convergence of the vorticity for the 2D Euler equations in the inviscid limit, Arch. Ration. Mech. Anal., Volume 240 (2021) no. 1, pp. 295-326 | DOI | Zbl | MR
[Che92] Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace, J. Math. Pures Appl., Volume 71 (1992) no. 5, pp. 407-417 | Zbl | MR
[Che95] Fluides parfaits incompressibles, Astérisque, 230, Société Mathématique de France, 1995 | Zbl
[Cob23] On the well-posedness of a fractional Stokes-transport system (2023) | arXiv
[Cor96] On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl., Volume 75 (1996) no. 2, pp. 155-188 | Zbl | MR
[CVW15] Analyticity of Lagrangian trajectories for well posed inviscid incompressible fluid models, Adv. Math., Volume 285 (2015), pp. 352-393 | DOI | Zbl | MR
[Dob79] Vlasov equations, Funct. Anal. Appl., Volume 13 (1979), pp. 115-123 | DOI | Zbl
[Fra00] An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, 128, Cambridge University Press, 2000 | Zbl | MR
[FZ14] A very smooth ride in a rough sea, Commun. Math. Phys., Volume 326 (2014) no. 2, pp. 499-505 | DOI | Zbl | MR
[Gal11] An introduction to the mathematical theory of the Navier–Stokes equations, Springer Monographs in Mathematics, 38, Springer, 2011 | DOI | Zbl | MR
[Gam94] Incompressible Euler system and analytic microlocal regularity, Ann. Inst. Fourier, Volume 44 (1994), pp. 1449-1475 | DOI | Zbl | MR
[GH10] Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, J. Math. Pures Appl., Volume 93 (2010) no. 1, pp. 61-90 | DOI | Zbl | MR
[GH12] Prescribing the motion of a set of particles in a three-dimensional perfect fluid, SIAM J. Control Optim., Volume 50 (2012) no. 5, pp. 2726-2742 | DOI | Zbl | MR
[GH16] Lagrangian controllability at low Reynolds number, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1040-1053 | DOI | Zbl | MR | Numdam
[Gla00] Exact boundary controllability of 3-D Euler equation, ESAIM, Control Optim. Calc. Var., Volume 5 (2000), pp. 1-44 | DOI | Zbl | MR | Numdam
[Gla12] Some questions of control in fluid mechanics, Control of Partial Differential Equations (Lecture Notes in Mathematics), Volume 2048, Springer, 2012, pp. 131-206 | DOI | MR
[Gra23] Dynamics of density patches in infinite Prandtl number convection, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 4, 69 | DOI | Zbl | MR
[GS12] On the motion of a rigid body in a two-dimensional irregular ideal flow, Flow, Volume 44 (2012) no. 5, pp. 3101-3126 | DOI | Zbl
[GST12] Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 1, pp. 1-51 | Zbl | DOI | MR | Numdam
[Hau09] Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 8, pp. 1357-1384 | DOI | Zbl | MR
[HK17] Lagrangian controllability of inviscid incompressible fluids: a constructive approach, ESAIM, Control Optim. Calc. Var., Volume 23 (2017) no. 3, pp. 1179-1200 | DOI | Zbl | MR | Numdam
[HKM24] On hydrodynamic limits of the Vlasov–Navier–Stokes system, Memoirs of the American Mathematical Society, 1516, American Mathematical Society, 2024 | DOI
[HS21] The influence of Einstein’s effective viscosity on sedimentation at very small particle volume fraction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1897-1927 | DOI | Zbl | MR | Numdam
[Höf18] Sedimentation of inertialess particles in Stokes flows, Commun. Math. Phys., Volume 360 (2018) no. 1, pp. 55-101 | DOI | Zbl | MR
[Inc16] On a Lagrangian formulation of the incompressible Euler equation, Differ. Equ., Volume 29 (2016) no. 4, pp. 320-359 | DOI | Zbl
[Kat00] On the smoothness of trajectories in incompressible perfect fluids, Nonlinear wave equations (Contemporary Mathematics), Volume 263, American Mathematical Society, 2000, pp. 109-130 | Zbl | DOI
[Leb22] Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip, J. Math. Pures Appl., Volume 158 (2022), pp. 120-143 | DOI | Zbl | MR
[Lio96] Mathematical topics in fluid mechanics. Vol. 1: Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3, Oxford University Press, 1996 | Zbl | MR
[Loe06] Uniqueness of the solution to the Vlasov–Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006) no. 1, pp. 68-79 | DOI | Zbl | MR
[Mec19] Sedimentation of particles in Stokes flow, Kinet. Relat. Models, Volume 12 (2019) no. 5, pp. 995-1044 | DOI | Zbl | MR
[Mec21] On the sedimentation of a droplet in Stokes flow, Commun. Math. Sci., Volume 19 (2021) no. 6, pp. 1627-1654 | DOI | MR
[Mio16] A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system, Commun. Math. Phys., Volume 346 (2016) no. 2, pp. 469-482 | DOI | Zbl | MR
[San14] Introduction to optimal transport theory, Optimal transport. Theory and applications (London Mathematical Society Lecture Note Series), Volume 413, London Mathematical Society, 2014, pp. 3-21 | Zbl | DOI
[San15] Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progress in Nonlinear Differential Equations and their Applications, 87, Birkhäuser; Springer, 2015 | DOI | Zbl | MR
[Ser95] Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., Volume 74 (1995) no. 2, pp. 95-104 | Zbl | MR
[Ser20] Mean field limit for Coulomb-type flows, Duke Math. J., Volume 169 (2020) no. 15, pp. 2887-2935 | DOI | Zbl | MR
[Shn12] On the Analyticity of Particle Trajectories in the Ideal Incompressible Fluid, Glob. Stoch. Anal., Volume 2 (2012) no. 1, pp. 149-157 | Zbl
[Sue11] Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain, J. Differ. Equations, Volume 251 (2011) no. 12, pp. 3421-3449 | DOI | Zbl | MR
[Yud63] Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 1032-1066 (also published in U.S.S.R. Comput. Math. and Math. Phys., 3, pp. 1407–1456) | Zbl | MR
Cité par Sources :





