[Les noyaux de la chaleur ne forment pas une famille d’expanseurs]
We study infinite analogues of expander graphs, namely graphs whose subgraphs weighted by heat kernels form an expander family. Our main result is that there does not exist any infinite expander in this sense. This proves the analogue for random walks of Benjamini’s conjecture that there is no infinite graph whose metric balls are uniformly expanders. The proof relies on a study of stationary random graphs, in particular proving non-expansion of heat kernels in that setting. A key result is that any stationary random graph is stationary hyperfinite, which is a new property of independent interest.
Notre résultat principal est qu’il n’existe aucun graphe infini dont l’ensemble des sous-graphes pondérés par des noyaux de la chaleur forment une famille d’expanseurs. Cela prouve une analogue, pour les marches aléatoires, de la conjecture de Benjamini selon laquelle il n’existe pas de graphe infini dont les boules métriques sont une famille d’expanseurs. La démonstration repose sur l’étude de graphes aléatoires stationnaires, en particulier la démonstration de la non-expansion des noyaux de la chaleur dans ce cadre. Un résultat clé est que tout graphe aléatoire stationnaire est stationnaire hyperfini, ce qui est une notion nouvelle, d’un intérêt indépendant.
Révisé le :
Accepté le :
Publié le :
Keywords: Stationary random graphs, random walks, expander graphs
Frączyk, Mikołaj  1 ; van Limbeek, Wouter  2
CC-BY 4.0
@article{AHL_2024__7__1301_0,
author = {Fr\k{a}czyk, Miko{\l}aj and van Limbeek, Wouter},
title = {Heat kernels are not uniform expanders},
journal = {Annales Henri Lebesgue},
pages = {1301--1321},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.220},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.220/}
}
Frączyk, Mikołaj; van Limbeek, Wouter. Heat kernels are not uniform expanders. Annales Henri Lebesgue, Tome 7 (2024), pp. 1301-1321. doi: 10.5802/ahl.220
[Ada90] Trees and amenable equivalence relations, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 1, pp. 1-14 | DOI | Zbl | MR
[AGV14] Kesten’s theorem for Invariant Random Subgroups, Duke Math. J., Volume 163 (2014) no. 3, pp. 465-488 | DOI | Zbl | MR
[AL07] Processes on unimodular random networks, Electron. J. Probab., Volume 12 (2007) no. 54, pp. 1454-1508 | DOI | MR | Zbl
[BC12] Ergodic theory on stationary random graphs, Electron. J. Probab., Volume 17 (2012), 93 | DOI | MR | Zbl
[Ben98] Expanders are not hyperbolic, Isr. J. Math., Volume 108 (1998), pp. 33-36 | DOI | MR | Zbl
[Ben04] Note on personal website, http://www.wisdom.weizmann.ac.il/~itai/infexp.ps, 2004
[Ben13] Euclidean vs. graph metric, Erdős centennial (Bolyai Society Mathematical Studies), Volume 25, János Bolyai Mathematical Society; Springer, 2013, pp. 35-57 | DOI | MR | Zbl
[CFW81] An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dyn. Syst., Volume 1 (1981) no. 4, pp. 431-450 | DOI | Zbl | MR
[Ele07] The combinatorial cost, Enseign. Math., Volume 53 (2007) no. 3-4, pp. 225-235 | MR | Zbl
[ET11] Quasi-invariant means and Zimmer amenability (2011) (preprint) | arXiv
[Gro03] Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 73-146 | Zbl | DOI | MR
[JS87] Asymptotically invariant sequences and approximate finiteness, Am. J. Math., Volume 109 (1987) no. 1, pp. 91-114 | DOI | MR | Zbl
[Kai05] Amenability and the Liouville property, Isr. J. Math., Volume 149 (2005) no. 1, pp. 45-85 | Zbl | DOI | MR
[Kec93] Amenable versus hyperfinite Borel equivalence relations, J. Symb. Log., Volume 58 (1993) no. 3, pp. 894-907 | DOI | MR | Zbl
[Lee22] Up to a double cover, every regular connected graph is isomorphic to a Schreier graph, Bull. Belg. Math. Soc. Simon Stevin, Volume 28 (2022) no. 3, pp. 373-379 | DOI | Zbl | MR
[Lov12] Large networks and graph limits, Colloquium Publications, 60, American Mathematical Society, 2012 | MR | DOI | Zbl
[Mac62] Point realizations of transformation groups, Ill. J. Math., Volume 6 (1962), pp. 327-335 | MR | Zbl
[Mar73] Explicit constructions of expanders, Probl. Peredachi Inf., Volume 9 (1973) no. 4, pp. 71-80 | MR | Zbl
[NY08] What is property A?, Notices Am. Math. Soc., Volume 55 (2008) no. 4, pp. 474-475 | MR | Zbl
[Oza06] Amenable actions and applications, Proceedings of the International Congress of Mathematicians. Vol. II: Invited lectures, European Mathematical Society, 2006, pp. 1563-1580 | MR | Zbl
[PT22] The Free Uniform Spanning Forest is disconnected in some virtually free groups, depending on the generator set, Ann. Probab., Volume 50 (2022) no. 6, pp. 2218-2243 | DOI | Zbl | MR
[Sch11] Hyperfinite Graph Limits, Selected Works of Oded Schramm (Benjamini, Itai; Häggström, Olle, eds.), Springer, 2011, pp. 639-645 | DOI | Zbl
[Yu00] The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000) no. 1, pp. 201-240 | DOI | MR | Zbl
[Zim78] Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal., Volume 27 (1978) no. 3, pp. 350-372 | DOI | MR | Zbl
[Zim84] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984 | DOI | Zbl | MR
Cité par Sources :





