Deforming a Finsler metric on the two-torus to a flat Finsler metric with conjugate geodesic flows
[Déformation d’une métrique de Finsler sur le tore bidimensionnel en une métrique de Finsler plate avec des flots géodésiques conjugués]
Annales Henri Lebesgue, Tome 7 (2024), pp. 1131-1174

We show that the space of (reversible) Finsler metrics on the two-torus 𝕋 2 whose geodesic flow is conjugate to the geodesic flow of a flat Finsler metric strongly deformation retracts to the space of flat Finsler metrics with respect to the uniform convergence topology. Along the proof, we also show that two Finsler metrics on 𝕋 2 without conjugate points, whose Heber foliations are smooth and with the same marked length spectrum, have conjugate geodesic flows.

Nous montrons que l’espace des métriques de Finsler (réversibles) sur le tore bidimensionnel 𝕋 2 , dont le flot géodésique est conjugué au flot géodésique d’une métrique de Finsler plate se rétracte par déformation forte sur l’espace des métriques de Finsler plates par rapport à la topologie de la convergence uniforme. Au cours de la preuve, nous montrons également que deux métriques de Finsler sur 𝕋 2 sans points conjugués, dont les feuilletages d’Heber sont lisses et ont le même spectre marqué des longueurs, ont des flots géodésiques conjugués.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.217
Classification : 37J39, 53C22, 53C65
Keywords: Finsler metrics, dynamical systems, geodesic flow, conjugate flows, conjugate points, integral geometry, Crofton formula, Heber foliation, curve shortening flow

Nakhlé, Elie  1   ; Sabourau, Stéphane  1

1 Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil (France) Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__1131_0,
     author = {Nakhl\'e, Elie and Sabourau, St\'ephane},
     title = {Deforming a {Finsler} metric on the two-torus to a flat {Finsler} metric with conjugate geodesic flows},
     journal = {Annales Henri Lebesgue},
     pages = {1131--1174},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.217},
     zbl = {07914812},
     mrnumber = {4799916},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.217/}
}
TY  - JOUR
AU  - Nakhlé, Elie
AU  - Sabourau, Stéphane
TI  - Deforming a Finsler metric on the two-torus to a flat Finsler metric with conjugate geodesic flows
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 1131
EP  - 1174
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.217/
DO  - 10.5802/ahl.217
LA  - en
ID  - AHL_2024__7__1131_0
ER  - 
%0 Journal Article
%A Nakhlé, Elie
%A Sabourau, Stéphane
%T Deforming a Finsler metric on the two-torus to a flat Finsler metric with conjugate geodesic flows
%J Annales Henri Lebesgue
%D 2024
%P 1131-1174
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.217/
%R 10.5802/ahl.217
%G en
%F AHL_2024__7__1131_0
Nakhlé, Elie; Sabourau, Stéphane. Deforming a Finsler metric on the two-torus to a flat Finsler metric with conjugate geodesic flows. Annales Henri Lebesgue, Tome 7 (2024), pp. 1131-1174. doi: 10.5802/ahl.217

[AABZ15] Arcostanzo, Marc; Arnaud, Marie-Claude; Bolle, Philippe; Zavidovique, Maxime Tonelli Hamiltonians without conjugate points and C 0 integrability, Math. Z., Volume 280 (2015) no. 1–2, pp. 165-194 | MR | DOI | Zbl

[ABHS17] Abbondandolo, Alberto; Bramham, Barney; Hryniewicz, Umberto L.; Salomão, Pedro A. S. A systolic inequality for geodesic flows on the two-sphere, Math. Ann., Volume 367 (2017) no. 1-2, pp. 701-753 | MR | DOI | Zbl

[Ang88] Angenent, Sigurd The zero set of a solution of a parabolic equation, J. Reine Angew. Math., Volume 390 (1988), pp. 79-96 | MR | DOI | Zbl

[Ang90] Angenent, Sigurd Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature, Ann. Math., Volume 132 (1990) no. 3, pp. 451-483 | DOI | Zbl

[Ban88] Bangert, Victor Mather sets for twist maps and geodesics on tori, Dynamics reported. Vol. 1 (Dynamics Reported. A Series in Dynamical Systems and their Applications), Volume 1, John Wiley & Sons, 1988, pp. 1-56 | MR | Zbl | DOI

[BC21] Burago, Dmitri; Chen, Dong Finsler perturbation with nondense geodesics with irrational directions, Asian J. Math., Volume 25 (2021) no. 5, pp. 715-726 | MR | DOI | Zbl

[BCS00] Bao, David; Chern, Shiing-Shen; Shen, Zhongmin An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, 200, Springer, 2000 | MR | Zbl

[Ber03] Berger, Marcel A panoramic view of Riemannian geometry, Springer, 2003 | MR | DOI | Zbl

[Bes78] Besse, Arthur L. Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978 | MR | Zbl | DOI

[BI94] Burago, Dmitri; Ivanov, Sergei V. Riemannian tori without conjugate points are flat, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 259-269 | MR | DOI | Zbl

[BM08] Balacheff, Florent; Massart, Daniel Stable norms of non-orientable surfaces, Ann. Inst. Fourier, Volume 58 (2008) no. 4, pp. 1337-1369 | MR | DOI | Zbl | Numdam

[BP86] Byalyĭ, M. L.; Polterovich, L. V. Geodesic flows on the two-dimensional torus and phase transitions “commensurability-noncommensurability”, Funct. Anal. Appl., Volume 20 (1986), pp. 260-266 | DOI | Zbl

[Che19] Chen, Dong On total flexibility of local structures of Finsler tori without conjugate points, J. Topol. Anal., Volume 11 (2019) no. 2, pp. 349-355 | MR | DOI | Zbl

[CK94] Croke, Christopher B.; Kleiner, Bruce Conjugacy and rigidity for manifolds with a parallel vector field, J. Differ. Geom., Volume 39 (1994), pp. 659-680 | MR | DOI | Zbl

[CK95] Croke, Christopher B.; Kleiner, Bruce On tori without conjugate points, Invent. Math., Volume 120 (1995) no. 2, pp. 241-257 | MR | DOI | Zbl

[Cro90] Croke, Christopher B. Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 150-169 | MR | DOI | Zbl

[CS86] Croke, Christopher B.; Schroeder, Viktor The fundamental group of compact manifolds without conjugate points, Comment. Math. Helv., Volume 61 (1986) no. 1, pp. 161-175 | MR | DOI | Zbl

[CZ98] Chou, Kai-Seng; Zhu, Xi-Ping Shortening complete plane curves, J. Differ. Geom., Volume 50 (1998) no. 3, pp. 471-504 | MR | DOI | Zbl

[EH89] Ecker, Klaus; Huisken, Gerhard Mean curvature evolution of entire graphs, Ann. Math., Volume 130 (1989) no. 3, pp. 453-471 | DOI | Zbl

[EH91] Ecker, Klaus; Huisken, Gerhard Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., Volume 105 (1991) no. 3, pp. 547-569 | MR | DOI | Zbl

[Ehr50] Ehresmann, Charles Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie (Espaces Fibrés) Bruxelles, 1950, Georges Thone; Masson & Cie (1950), pp. 29-55 | MR | Zbl

[Esc77] Eschenburg, Jost-Hinrich Horospheres and the stable part of the geodesic flow, Math. Z., Volume 153 (1977) no. 3, pp. 237-251 | MR | DOI | Zbl

[FHS82] Freedman, Michael; Hass, Joel; Scott, Peter Closed geodesics on surfaces, Bull. Lond. Math. Soc., Volume 14 (1982) no. 5, pp. 385-391 | MR | DOI | Zbl

[Gag90] Gage, Michael E. Curve shortening on surfaces, Ann. Sci. Éc. Norm. Supér., Volume 23 (1990) no. 2, pp. 229-256 | MR | DOI | Zbl | Numdam

[Gro99] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999 | MR | Zbl

[Hal12] Halldorsson, Hoeskuldur P. Self-similar solutions to the curve shortening flow, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5285-5309 | MR | DOI | Zbl

[Heb94] Heber, Jens On the geodesic flow of tori without conjugate points, Math. Z., Volume 216 (1994) no. 2, pp. 209-216 | MR | DOI | Zbl

[Hed32] Hedlund, Gustav A. Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., Volume 33 (1932) no. 4, pp. 719-739 | DOI | Zbl

[Hop48] Hopf, E. Closed surfaces without conjugate points, Proc. Natl. Acad. Sci. USA, Volume 34 (1948), pp. 47-51 | MR | DOI | Zbl

[Lee13] Lee, John M. Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013 | MR | DOI | Zbl

[Mat91] Mather, John N. Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207 | MR | DOI | Zbl

[MS11] Massart, Daniel; Sorrentino, Alfonso Differentiability of Mather’s average action and integrability on closed surfaces, Nonlinearity, Volume 24 (2011) no. 6, pp. 1777-1793 | MR | DOI | Zbl

[NT07] Nara, Mitsunori; Taniguchi, Masaharu The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Differ. Equations, Volume 237 (2007) no. 1, pp. 61-76 | MR | DOI | Zbl

[RÈ66] Repnikov, V. D.; Èĭdel’man, Samuïl D. Necessary and sufficient conditions for establishing a solution to the Cauchy problem, Sov. Math., Dokl., Volume 7 (1966), pp. 388-391 | Zbl

[RÈ67] Repnikov, V. D.; Èĭdel’man, Samuïl D. A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Math. USSR, Sb., Volume 2 (1967) no. 1, pp. 135-139 | DOI | Zbl

[Sab19] Sabourau, Stéphane Strong deformation retraction of the space of Zoll Finsler projective planes, J. Symplectic Geom., Volume 17 (2019) no. 2, pp. 443-476 | MR | Zbl | DOI

[Sch15] Schröder, Jan P. Global minimizers for Tonelli Lagrangians on the 2-torus, J. Topol. Anal., Volume 7 (2015) no. 2, pp. 261-291 | MR | DOI | Zbl

[WW11] Wang, Xiaoliu; Wo, Weifeng On the stability of stationary line and grim reaper in planar curvature flow, Bull. Aust. Math. Soc., Volume 83 (2011) no. 2, pp. 177-188 | MR | DOI | Zbl

[ÁPB10] Álvarez Paiva, Juan-Carlos; Berck, Gautier Finsler surfaces with prescribed geodesics (2010) | arXiv

Cité par Sources :