Non-ergodicity on SU(2) and SU(3) character varieties of the once-punctured torus
[Non-ergodicité sur les variétés de caractères pour SU(2) et SU(3) d’un tore épointé]
Annales Henri Lebesgue, Tome 7 (2024), pp. 1099-1130

Utilizing KAM theory, we show that there are certain levels in relative SU(2) and SU(3) character varieties of the once-punctured torus where the action of a single hyperbolic element is not ergodic.

En utilisant la théorie KAM, on montre l’existence de certains niveaux dans les variétés de caractères relatives pour SU(2) et SU(3) d’un tore épointé sur lesquels l’action d’un élément hyperbolique spécifique n’est pas ergodique.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.216
Classification : 14M35, 22D40, 70H08, 53D30, 37A25
Keywords: KAM Theory, Non-ergodicity, Character Variety

Forni, Giovanni  1   ; Goldman, William M.  1   ; Lawton, Sean  2   ; Matheus, Carlos  3

1 Department of Mathematics, University of Maryland, College Park, MD 20742 (USA)
2 Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, Virginia 22030 (USA)
3 CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__1099_0,
     author = {Forni, Giovanni and Goldman, William M. and Lawton, Sean and Matheus, Carlos},
     title = {Non-ergodicity on $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ character varieties of the once-punctured torus},
     journal = {Annales Henri Lebesgue},
     pages = {1099--1130},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.216},
     zbl = {07914811},
     mrnumber = {4799915},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.216/}
}
TY  - JOUR
AU  - Forni, Giovanni
AU  - Goldman, William M.
AU  - Lawton, Sean
AU  - Matheus, Carlos
TI  - Non-ergodicity on $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ character varieties of the once-punctured torus
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 1099
EP  - 1130
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.216/
DO  - 10.5802/ahl.216
LA  - en
ID  - AHL_2024__7__1099_0
ER  - 
%0 Journal Article
%A Forni, Giovanni
%A Goldman, William M.
%A Lawton, Sean
%A Matheus, Carlos
%T Non-ergodicity on $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ character varieties of the once-punctured torus
%J Annales Henri Lebesgue
%D 2024
%P 1099-1130
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.216/
%R 10.5802/ahl.216
%G en
%F AHL_2024__7__1099_0
Forni, Giovanni; Goldman, William M.; Lawton, Sean; Matheus, Carlos. Non-ergodicity on $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ character varieties of the once-punctured torus. Annales Henri Lebesgue, Tome 7 (2024), pp. 1099-1130. doi: 10.5802/ahl.216

[ACG10] Adem, Alejandro; Cohen, Frederick R.; Gómez, José Manuel Stable splittings, spaces of representations and almost commuting elements in Lie groups, Math. Proc. Camb. Philos. Soc., Volume 149 (2010) no. 3, pp. 455-490 | DOI | MR | Zbl

[BHJL22] Biswas, Indranil; Hurtubise, Jacques; Jeffrey, Lisa C.; Lawton, Sean Poisson maps between character varieties: gluing and capping, J. Symplectic Geom., Volume 20 (2022) no. 6, pp. 1255-1312 | DOI | MR | Zbl

[BL22] Burelle, Jean-Philippe; Lawton, Sean Dynamics on nilpotent character varieties, Conform. Geom. Dyn., Volume 26 (2022), pp. 194-207 | DOI | MR | Zbl

[BLR19] Biswas, Indranil; Lawton, Sean; Ramras, Daniel Wonderful compactification of character varieties, Pac. J. Math., Volume 302 (2019) no. 2, pp. 413-435 (with an appendix by Arlo Caine and Samuel Evens) | DOI | MR | Zbl

[Bou21] Bouilly, Yohann Ergodic actions of Torelli groups on character varieties and pure modular groups on relative character varieties and topological dynamics of modular groups, Ph. D. Thesis, Université de Strasbourg, Strasbourg, France (2021) (HAL ID: tel-03709650, https://theses.hal.science/tel-03709650v2/file/bouilly_yohann_2021_ED269.pdf)

[BR89] Bhosle, Usha; Ramanathan, A. Moduli of parabolic G-bundles on curves, Math. Z., Volume 202 (1989) no. 2, pp. 161-180 | DOI | MR | Zbl

[Bro96] Brown, Richard J. Mapping class actions on the SU(2)-representation varieties of compact surfaces, Ph. D. Thesis, University of Maryland, College Park, College Park, USA (1996), 77 pages | MR

[Bro98] Brown, Richard J. Anosov mapping class actions on the SU (2)-representation variety of a punctured torus, Ergodic Theory Dyn. Syst., Volume 18 (1998) no. 3, pp. 539-554 | DOI | MR | Zbl

[EFK13] Eliasson, L. Hakan; Fayad, Bassam; Krikorian, Raphaël KAM-tori near an analytic elliptic fixed point, Regul. Chaotic Dyn., Volume 18 (2013) no. 6, pp. 801-831 | DOI | MR | Zbl

[FL09] Florentino, Carlos; Lawton, Sean The topology of moduli spaces of free group representations, Math. Ann., Volume 345 (2009) no. 2, pp. 453-489 | DOI | MR | Zbl

[FL14] Florentino, Carlos; Lawton, Sean Topology of character varieties of Abelian groups, Topology Appl., Volume 173 (2014), pp. 32-58 | DOI | MR | Zbl

[FLR17] Florentino, Carlos; Lawton, Sean; Ramras, Daniel Homotopy groups of free group character varieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 1, pp. 143-185 | MR | Zbl

[GLX20] Goldman, William M.; Lawton, Sean; Xia, Eugene Z. The mapping class group action on SU(3)-character varieties, Ergodic Theory Dyn. Syst. (2020), pp. 1-15 | MR | DOI | Zbl

[Gol97] Goldman, William M. Ergodic theory on moduli spaces, Ann. Math., Volume 146 (1997) no. 3, pp. 475-507 | DOI | MR | Zbl

[HM87] Harris, Gary; Martin, Clyde The roots of a polynomial vary continuously as a function of the coefficients, Proc. Am. Math. Soc., Volume 100 (1987) no. 2, pp. 390-392 | Zbl | DOI | MR

[Hue95] Huebschmann, Johannes Symplectic and Poisson structures of certain moduli spaces. I, Duke Math. J., Volume 80 (1995) no. 3, pp. 737-756 | DOI | MR | Zbl

[Kri22] Krikorian, Raphaël On the divergence of Birkhoff normal forms, Publ. Math., Inst. Hautes Étud. Sci., Volume 135 (2022), pp. 1-181 | DOI | MR | Zbl

[Law06] Lawton, Sean SL(3,)-Character Varieties and ℝℙ 2 -Structures on a Trinion, Ph. D. Thesis, University of Maryland, College Park, USA (2006)

[Law07] Lawton, Sean Generators, relations and symmetries in pairs of 3×3, unimodular matrices, J. Algebra, Volume 313 (2007) no. 2, pp. 782-801 | MR | Zbl | DOI

[Law09] Lawton, Sean Poisson geometry of SL(3,)-character varieties relative to a surface with boundary, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2397-2429 | DOI | MR | Zbl

[MF94] Mather, John N.; Forni, Giovanni Action minimizing orbits in Hamiltonian systems, Transition to chaos in classical and quantum mechanics (Montecatini Terme, 1991) (Lecture Notes in Mathematics), Volume 1589, Springer, 1994, pp. 92-186 | MR | DOI | Zbl

[Mos73] Moser, Jürgen K. Stable and random motions in dynamical systems, Annals of Mathematics Studies, 77, Princeton University Press; University of Tokyo Press, 1973 (with special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J.) | MR | Zbl

[PM03] Pérez-Marco, Ricardo Convergence or generic divergence of the Birkhoff normal form, Ann. Math., Volume 157 (2003) no. 2, pp. 557-574 | DOI | MR | Zbl

[PX02] Pickrell, Doug; Xia, Eugene Z. Ergodicity of mapping class group actions on representation varieties. I. Closed surfaces, Comment. Math. Helv., Volume 77 (2002) no. 2, pp. 339-362 | DOI | MR | Zbl

[PX03] Pickrell, Doug; Xia, Eugene Z. Ergodicity of mapping class group actions on representation varieties. II. Surfaces with boundary, Transform. Groups, Volume 8 (2003) no. 4, pp. 397-402 | DOI | MR | Zbl

[Rot55] Roth, Klaus F. Rational approximations to algebraic numbers, Mathematika, Volume 2 (1955), pp. 1-20 (corrigendum p. 168) | Zbl | DOI | MR

[RS90] Richardson, Roger W.; Slodowy, Peter J. Minimum vectors for real reductive algebraic groups, J. Lond. Math. Soc., Volume 42 (1990) no. 3, pp. 409-429 | DOI | MR | Zbl

[Rüs02] Rüssmann, Helmut Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition, Ergodic Theory Dyn. Syst., Volume 22 (2002) no. 5, pp. 1551-1573 | DOI | MR | Zbl

[SM95] Siegel, Carl Ludwig; Moser, Jürgen K. Lectures on celestial mechanics, Classics in Mathematics, Springer, 1995 (translated from the German by C. I. Kalme, reprint of the 1971 translation) | MR | Zbl

Cité par Sources :