[Sur la signature d’une tresse positive]
We show that the signature of a positive braid link is bounded from below by one-quarter of its first Betti number. This equates to one-half of the optimal bound conjectured by Feller, who previously provided a bound of one-eighth.
On montre que la signature d’un entrelacs représentable par une tresse positive est au moins un quart de son premier nombre de Betti. Cela correspond a la moitié de la borne optimale conjecturée par Feller, qui avait auparavant prouvé une borne d’un huitième.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.212
Keywords: Signature, positive braid, chessboard surface, Goeritz form
Greene, Joshua Evan  1 ; Liechti, Livio  2
CC-BY 4.0
@article{AHL_2024__7__823_0,
author = {Greene, Joshua Evan and Liechti, Livio},
title = {On the signature of a positive braid},
journal = {Annales Henri Lebesgue},
pages = {823--839},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.212},
mrnumber = {4799911},
zbl = {07914807},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.212/}
}
Greene, Joshua Evan; Liechti, Livio. On the signature of a positive braid. Annales Henri Lebesgue, Tome 7 (2024), pp. 823-839. doi: 10.5802/ahl.212
[BDL18] Signature and concordance of positive knots, Bull. Lond. Math. Soc., Volume 50 (2018) no. 1, pp. 166-173 | MR | DOI | Zbl
[Deh15] On the zeroes of the Alexander polynomial of a Lorenz knot, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 509-548 | MR | DOI | Zbl | Numdam
[Fel15] The signature of positive braids is linearly bounded by their genus, Int. J. Math., Volume 26 (2015) no. 10, p. 1550081 | DOI | Zbl
[Fel18] A sharp signature bound for positive four-braids, Q. J. Math., Volume 69 (2018) no. 1, pp. 271-283 | MR | DOI | Zbl
[GL78] On the Signature of a Link, Invent. Math., Volume 47 (1978), pp. 53-69 | MR | DOI | Zbl
[GL16] Signature jumps and Alexander polynomials for links, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5407-5417 | MR | DOI | Zbl
[Goe33] Knoten und quadratische Formen, Math. Z., Volume 36 (1933), pp. 647-654 | MR | DOI | Zbl
[KT76] Signature of links, Trans. Am. Math. Soc., Volume 216 (1976), pp. 351-365 | MR | DOI | Zbl
[Lic97] An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer, 1997 | MR | Zbl | DOI
[Lie16] Signature, positive Hopf plumbing and the Coxeter transformation (With appendix by Peter Feller and Livio Liechti), Osaka J. Math., Volume 53 (2016) no. 1, pp. 251-266 | MR | Zbl
[Lie20] On the genus defect of positive braid knots, Algebr. Geom. Topol., Volume 20 (2020) no. 1, pp. 403-428 | MR | DOI | Zbl
[Mur65] On a certain numerical invariant of link types, Trans. Am. Math. Soc., Volume 117 (1965), pp. 387-422 | MR | DOI | Zbl
[Rud82] Non-trivial positive braids have positive signature, Topology, Volume 21 (1982), pp. 325-327 | MR | Zbl | DOI
[Sta78] Constructions of fibred knots and links, Algebraic and Geometric Topology (Proceedings of Symposia in Pure Mathematics), Volume 32, American Mathematical Society (1978), pp. 55-60 | Zbl | DOI
[Sto08] Bennequin’s inequality and the positivity of the signature, Trans. Am. Math. Soc., Volume 360 (2008) no. 10, pp. 5173-5199 | MR | DOI | Zbl
[Tro62] Homology of group systems with applications to knot theory, Ann. Math., Volume 76 (1962), pp. 464-498 | DOI | Zbl
Cité par Sources :





