On the signature of a positive braid
[Sur la signature d’une tresse positive]
Annales Henri Lebesgue, Tome 7 (2024), pp. 823-839

We show that the signature of a positive braid link is bounded from below by one-quarter of its first Betti number. This equates to one-half of the optimal bound conjectured by Feller, who previously provided a bound of one-eighth.

On montre que la signature d’un entrelacs représentable par une tresse positive est au moins un quart de son premier nombre de Betti. Cela correspond a la moitié de la borne optimale conjecturée par Feller, qui avait auparavant prouvé une borne d’un huitième.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.212
Classification : 57K10
Keywords: Signature, positive braid, chessboard surface, Goeritz form

Greene, Joshua Evan  1   ; Liechti, Livio  2

1 Department of Mathematics, Boston College, Chestnut Hill, MA 02467, (United States of America)
2 Département de Mathématiques, Université de Fribourg, Chemin du Musée 23, 1700 Fribourg (Switzerland)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__823_0,
     author = {Greene, Joshua Evan and Liechti, Livio},
     title = {On the signature of a positive braid},
     journal = {Annales Henri Lebesgue},
     pages = {823--839},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.212},
     mrnumber = {4799911},
     zbl = {07914807},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.212/}
}
TY  - JOUR
AU  - Greene, Joshua Evan
AU  - Liechti, Livio
TI  - On the signature of a positive braid
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 823
EP  - 839
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.212/
DO  - 10.5802/ahl.212
LA  - en
ID  - AHL_2024__7__823_0
ER  - 
%0 Journal Article
%A Greene, Joshua Evan
%A Liechti, Livio
%T On the signature of a positive braid
%J Annales Henri Lebesgue
%D 2024
%P 823-839
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.212/
%R 10.5802/ahl.212
%G en
%F AHL_2024__7__823_0
Greene, Joshua Evan; Liechti, Livio. On the signature of a positive braid. Annales Henri Lebesgue, Tome 7 (2024), pp. 823-839. doi: 10.5802/ahl.212

[BDL18] Baader, S.; Dehornoy, P.; Liechti, L. Signature and concordance of positive knots, Bull. Lond. Math. Soc., Volume 50 (2018) no. 1, pp. 166-173 | MR | DOI | Zbl

[Deh15] Dehornoy, P. On the zeroes of the Alexander polynomial of a Lorenz knot, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 509-548 | MR | DOI | Zbl | Numdam

[Fel15] Feller, P. The signature of positive braids is linearly bounded by their genus, Int. J. Math., Volume 26 (2015) no. 10, p. 1550081 | DOI | Zbl

[Fel18] Feller, P. A sharp signature bound for positive four-braids, Q. J. Math., Volume 69 (2018) no. 1, pp. 271-283 | MR | DOI | Zbl

[GL78] Gordon, C. McA.; Litherland, R. A. On the Signature of a Link, Invent. Math., Volume 47 (1978), pp. 53-69 | MR | DOI | Zbl

[GL16] Gilmer, P.; Livingston, C. Signature jumps and Alexander polynomials for links, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5407-5417 | MR | DOI | Zbl

[Goe33] Goeritz, L. Knoten und quadratische Formen, Math. Z., Volume 36 (1933), pp. 647-654 | MR | DOI | Zbl

[KT76] Kauffman, L. H.; Taylor, L. R. Signature of links, Trans. Am. Math. Soc., Volume 216 (1976), pp. 351-365 | MR | DOI | Zbl

[Lic97] Lickorish, W. B. R. An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer, 1997 | MR | Zbl | DOI

[Lie16] Liechti, L. Signature, positive Hopf plumbing and the Coxeter transformation (With appendix by Peter Feller and Livio Liechti), Osaka J. Math., Volume 53 (2016) no. 1, pp. 251-266 | MR | Zbl

[Lie20] Liechti, L. On the genus defect of positive braid knots, Algebr. Geom. Topol., Volume 20 (2020) no. 1, pp. 403-428 | MR | DOI | Zbl

[Mur65] Murasugi, K. On a certain numerical invariant of link types, Trans. Am. Math. Soc., Volume 117 (1965), pp. 387-422 | MR | DOI | Zbl

[Rud82] Rudolph, L. Non-trivial positive braids have positive signature, Topology, Volume 21 (1982), pp. 325-327 | MR | Zbl | DOI

[Sta78] Stallings, J. Constructions of fibred knots and links, Algebraic and Geometric Topology (Proceedings of Symposia in Pure Mathematics), Volume 32, American Mathematical Society (1978), pp. 55-60 | Zbl | DOI

[Sto08] Stoimenow, A. Bennequin’s inequality and the positivity of the signature, Trans. Am. Math. Soc., Volume 360 (2008) no. 10, pp. 5173-5199 | MR | DOI | Zbl

[Tro62] Trotter, H. F. Homology of group systems with applications to knot theory, Ann. Math., Volume 76 (1962), pp. 464-498 | DOI | Zbl

Cité par Sources :