Algebraic intersection for a family of Veech surfaces
[Intersection algébrique pour une famille de surfaces de Veech]
Annales Henri Lebesgue, Tome 7 (2024), pp. 787-821

We study some properties of the function KVol defined by

KVol(X,ω):=Vol(X,ω)sup α,β Int(α,β) l g (α)l g (β)

on the moduli space of translation surfaces. For the Teichmüller discs 𝒯 n of the original Veech surfaces arising from the right-angled triangles (π/2,π/n,(n-2)π/2n) for odd n5, we establish the first known explicit formula for KVol (beyond the case of the moduli space of flat tori).

On étudie la fonction KVol sur les espaces de modules de surfaces de translation définie par

KVol(X,ω):=Vol(X,ω)sup α,β Int(α,β) l g (α)l g (β).

En particulier, sur les disques de Teichmüller 𝒯 n des surfaces de Veech associées au billard dans les triangles (π/2,π/n,(n-2)π/2n) pour n impair 5, nous donnons la première formule explicite connue pour KVol (en dehors du cas des espaces de modules de tores plats).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.211
Classification : 37E05, 37D40
Keywords: Lyapunov exponents, translation surface, Teichmüller curve, algebraic intersection

Boulanger, Julien  1   ; Lanneau, Erwan  2   ; Massart, Daniel  3

1 Institut Fourier, UMR CNRS 5582, Université Grenoble Alpes, 100, rue des Maths, 38610 Gières (France)
2 Institut Fourier,UMR CNRS 5582, Université Grenoble Alpes, 100, rue des Maths, 38610 Gières (France)
3 Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__787_0,
     author = {Boulanger, Julien and Lanneau, Erwan and Massart, Daniel},
     title = {Algebraic intersection for a family of {Veech} surfaces},
     journal = {Annales Henri Lebesgue},
     pages = {787--821},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.211},
     mrnumber = {4799910},
     zbl = {07914806},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.211/}
}
TY  - JOUR
AU  - Boulanger, Julien
AU  - Lanneau, Erwan
AU  - Massart, Daniel
TI  - Algebraic intersection for a family of Veech surfaces
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 787
EP  - 821
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.211/
DO  - 10.5802/ahl.211
LA  - en
ID  - AHL_2024__7__787_0
ER  - 
%0 Journal Article
%A Boulanger, Julien
%A Lanneau, Erwan
%A Massart, Daniel
%T Algebraic intersection for a family of Veech surfaces
%J Annales Henri Lebesgue
%D 2024
%P 787-821
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.211/
%R 10.5802/ahl.211
%G en
%F AHL_2024__7__787_0
Boulanger, Julien; Lanneau, Erwan; Massart, Daniel. Algebraic intersection for a family of Veech surfaces. Annales Henri Lebesgue, Tome 7 (2024), pp. 787-821. doi: 10.5802/ahl.211

[Bou22] Boulanger, Julien Central points of the double heptagon translation surface are not connection points, Bull. Soc. Math. Fr., Volume 150 (2022) no. 2, pp. 459-472 | DOI | MR | Zbl

[Bou23a] Boulanger, Julien Algebraic intersection, lengths and Veech surfaces (2023) | arXiv

[Bou23b] Boulanger, Julien Quelques problèmes géométriques autour des surfaces de translation, Ph. D. Thesis, Université Grenoble-Alpes, Grenoble, France (2023)

[CKM21a] Cheboui, Smail; Kessi, Arezki; Massart, Daniel Algebraic intersection for translation surfaces in a family of Teichmüller disks, Bull. Soc. Math. Fr., Volume 149 (2021) no. 4, pp. 613-640 | DOI | MR | Zbl

[CKM21b] Cheboui, Smail; Kessi, Arezki; Massart, Daniel Algebraic intersection for translation surfaces in the stratum H(2), C. R. Math., Volume 359 (2021), pp. 65-70 | DOI | MR | Zbl | Numdam

[DFT11] Davis, Diana; Fuchs, Dmitry; Tabachnikov, Serge Periodic trajectories in the regular pentagon, Mosc. Math. J., Volume 11 (2011) no. 3, pp. 439-461 | MR | Zbl

[DL18] Davis, Diana; Lelievre, Samuel Periodic paths on the pentagon, double pentagon and golden L (2018) | arXiv

[FL23] Freedman, Sam; Lucas, Trent Veech fibrations (2023) | arXiv

[Hoo13] Hooper, W. Patrick Grid graphs and lattice surfaces, Int. Math. Res. Not., Volume 2013 (2013) no. 12, pp. 2657-2698 | MR | DOI | Zbl

[LN14] Lanneau, Erwan; Nguyen, Duc-Manh Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4, J. Topol., Volume 7 (2014) no. 2, pp. 475-522 | DOI | MR | Zbl

[Mas96] Massart, Daniel Normes stables des surfaces, Ph. D. Thesis, École Normale Supérieure de Lyon (1996)

[Mas22] Massart, Daniel A short introduction to translation surfaces, Veech surfaces, and Teichmüller dynamics, Surveys in geometry I, Springer, 2022, pp. 343-388 | DOI | MR | Zbl

[McM05] McMullen, Curtis T. Teichmüller curves in genus two: Discriminant and spin, Math. Ann., Volume 333 (2005) no. 1, pp. 87-130 | MR | DOI | Zbl

[McM07] McMullen, Curtis T. Dynamics of SL 2 () over moduli space in genus two, Ann. Math., Volume 165 (2007) no. 2, pp. 397-456 | DOI | Zbl

[MM14] Massart, Daniel; Muetzel, Bjoern On the intersection form of surfaces, Manuscr. Math., Volume 143 (2014) no. 1-2, pp. 19-49 | MR | DOI | Zbl

[Mon05] Monteil, Thierry On the finite blocking property, Ann. Inst. Fourier, Volume 55 (2005) no. 4, pp. 1195-1217 | MR | DOI | Zbl | Numdam

[SU10] Smillie, John; Ulcigrai, Corinna Geodesic flow on the Teichmüller disk of the regular octagon cutting sequences and octagon continued fractions maps, Dynamical numbers. Interplay between dynamical systems and number theory. A special program, May 1–July 31, 2009. International conference, MPI, Bonn, Germany, July 20–24, 2009. Proceedings (Contemporary Mathematics), Volume 532, American Mathematical Society, 2010, pp. 29-65 | MR | Zbl

[SU11] Smillie, John; Ulcigrai, Corinna Beyond Sturmian sequences: coding linear trajectories in the regular octagon, Proc. Lond. Math. Soc., Volume 102 (2011) no. 2, pp. 291-340 | MR | Zbl | DOI

[SW10] Smillie, John; Weiss, Barak Characterizations of lattice surfaces, Invent. Math., Volume 180 (2010) no. 3, pp. 535-557 | DOI | MR | Zbl

[Vee89] Veech, William A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | MR | DOI | Zbl

[Vor96] Vorobets, Ya. B. Planar structures and billiards in rational polygons, Russ. Math. Surv., Volume 51 (1996) no. 1, pp. 177-178 | MR | DOI | Zbl

[Wri16] Wright, Alex From rational billiards to dynamics on moduli spaces, Bull. Am. Math. Soc., Volume 53 (2016) no. 1, pp. 41-56 | DOI | MR | Zbl

[Zor06] Zorich, Anton Flat surfaces, Frontiers in number theory, physics, and geometry. I On random matrices, zeta functions, and dynamical systems, Springer, 2006, pp. 437-583 | DOI | MR | Zbl

Cité par Sources :