[Distribution des résonances de Ruelle pour les difféomorphismes d’Anosov analytiques]
We prove an upper bound for the number of Ruelle resonances for Koopman operators associated to real-analytic Anosov diffeomorphisms: in dimension , the number of resonances larger than is a when goes to . For each connected component of the space of real-analytic Anosov diffeomorphisms on a real-analytic manifold, we prove a dichotomy: either the exponent in our bound is never optimal, or it is optimal on a dense subset. Using examples constructed by Bandtlow, Just and Slipantschuk, we see that we are always in the latter situation for connected components of the space of real-analytic Anosov diffeomorphisms on the -dimensional torus.
Nous prouvons une borne supérieure sur le nombre de résonances de Ruelle pour les opérateurs de Koopman associés aux difféomorphismes d’Anosov analytiques : en dimension , le nombre de résonances plus grandes que est un lorsque tend vers . Dans chaque composante connexe de l’espace des difféomorphismes d’Anosov analytique réels sur une variété analytique réelle, nous établissons une dichotomie : soit l’exposant dans notre borne n’est jamais optimal, soit il l’est sur un ensemble dense. En utilisant des exemples construits par Bandtlow, Just et Slipantschuk, nous montrons que nous sommes toujours dans le deuxième cas pour les composantes connexes de l’espace des difféomorphismes d’Anosov analytiques réels sur le tore de dimension .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.208
Keywords: Anosov diffeomorphism, Ruelle resonances, Koopman operator, real-analytic
Jézéquel, Malo  1
CC-BY 4.0
@article{AHL_2024__7__673_0,
author = {J\'ez\'equel, Malo},
title = {Distribution of {Ruelle} resonances for real-analytic {Anosov} diffeomorphisms},
journal = {Annales Henri Lebesgue},
pages = {673--726},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.208},
zbl = {07914803},
mrnumber = {4799907},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.208/}
}
TY - JOUR AU - Jézéquel, Malo TI - Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms JO - Annales Henri Lebesgue PY - 2024 SP - 673 EP - 726 VL - 7 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.208/ DO - 10.5802/ahl.208 LA - en ID - AHL_2024__7__673_0 ER -
Jézéquel, Malo. Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms. Annales Henri Lebesgue, Tome 7 (2024), pp. 673-726. doi: 10.5802/ahl.208
[Ano67] Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. Steklova, Volume 90 (1967), p. 209 | MR | Zbl
[Bal17] The quest for the ultimate anisotropic Banach space, J. Stat. Phys., Volume 166 (2017) no. 3-4, pp. 525-557 | DOI | MR | Zbl
[Bal18] Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 68, Springer, 2018 | DOI | MR | Zbl
[Ban08] Resolvent estimates for operators belonging to exponential classes, Integral Equations Oper. Theory, Volume 61 (2008) no. 1, pp. 21-43 | DOI | MR | Zbl
[BCHP11] Resonances for manifolds hyperbolic near infinity: optimal lower bounds on order of growth, Int. Math. Res. Not. (2011) no. 19, pp. 4431-4470 | DOI | MR | Zbl
[BKL02] Ruelle–Perron–Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002) no. 6, pp. 1905-1973 | DOI | MR | Zbl
[BN19] Lower bounds for the Ruelle spectrum of analytic expanding circle maps, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 2, pp. 289-310 | DOI | MR | Zbl
[Bow08] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 2008 (With a preface by David Ruelle, edited by Jean-René Chazottes) | MR | Zbl | DOI
[BT07] Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, Volume 57 (2007) no. 1, pp. 127-154 | MR | Zbl | DOI | Numdam
[BT08] Dynamical determinants and spectrum for hyperbolic diffeomorphisms, Geometric and probabilistic structures in dynamics (Contemporary Mathematics), Volume 469, American Mathematical Society, 2008, pp. 29-68 | DOI | MR | Zbl
[CH05] The resonance counting function for Schrödinger operators with generic potentials, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 821-826 | DOI | MR | Zbl
[CH10] Maximal order of growth for the resonance counting functions for generic potentials in even dimensions, Indiana Univ. Math. J., Volume 59 (2010) no. 2, pp. 621-660 | MR | DOI | Zbl
[Chr05] Several complex variables and the distribution of resonances in potential scattering, Commun. Math. Phys., Volume 259 (2005) no. 3, pp. 711-728 | DOI | MR | Zbl
[Chr06] Several complex variables and the order of growth of the resonance counting function in Euclidean scattering, Int. Math. Res. Not. (2006), 43160 | DOI | MR | Zbl
[FG14] The space of Anosov diffeomorphisms, J. Lond. Math. Soc., Volume 89 (2014) no. 2, pp. 383-396 | DOI | MR | Zbl
[Flo71] Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math., Volume 247 (1971), pp. 155-195 | DOI | MR | Zbl
[FR06] Ruelle–Pollicott resonances for real analytic hyperbolic maps, Nonlinearity, Volume 19 (2006) no. 6, pp. 1233-1252 | DOI | MR | Zbl
[Fra69] Anosov diffeomorphisms on tori, Trans. Am. Math. Soc., Volume 145 (1969), pp. 117-124 | DOI | MR | Zbl
[Fri86] The zeta functions of Ruelle and Selberg. I, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 4, pp. 491-517 | MR | Zbl | DOI | Numdam
[Fri95] Meromorphic zeta functions for analytic flows, Commun. Math. Phys., Volume 174 (1995) no. 1, pp. 161-190 | DOI | MR | Zbl
[FRS08] Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances, Open Math. J., Volume 1 (2008), pp. 35-81 | DOI | MR | Zbl
[GBJ20] FBI Transform in Gevrey Classes and Anosov Flows (2020) | arXiv
[Gev18] Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire, Ann. Sci. Éc. Norm. Supér., Volume 35 (1918), pp. 129-190 | MR | Zbl | DOI | Numdam
[GL06] Banach spaces adapted to Anosov systems, Ergodic Theory Dyn. Syst., Volume 26 (2006) no. 1, pp. 189-217 | DOI | MR | Zbl
[GL08] Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differ. Geom., Volume 79 (2008) no. 3, pp. 433-477 | DOI | MR | Zbl
[GS91] Grauert tubes and the homogeneous Monge–Ampère equation, J. Differ. Geom., Volume 34 (1991) no. 2, pp. 561-570 | MR | Zbl | DOI
[GS92] Grauert tubes and the homogeneous Monge–Ampère equation. II, J. Differ. Geom., Volume 35 (1992) no. 3, pp. 627-641 | DOI | MR | Zbl
[HK76] Subharmonic functions. Vol. I, London Mathematical Society Monographs, 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976 | MR | Zbl
[HP70] Stable manifolds and hyperbolic sets, Global Analysis (Vols. XIV, XV, XVI, Berkeley, Calif., 1968) (Proceedings of Symposia in Pure Mathematics), American Mathematical Society (1970), pp. 133-163 | MR | Zbl
[Hör03] The analysis of linear partial differential operators. I Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003 Distribution theory and Fourier analysis, reprint of the second (1990) edition | DOI | MR | Zbl
[Jéz20] Local and global trace formulae for smooth hyperbolic diffeomorphisms, J. Spectr. Theory, Volume 10 (2020) no. 1, pp. 185-249 | DOI | MR | Zbl
[Jéz22] Upper bound on the number of resonances for even asymptotically hyperbolic manifolds with real-analytic ends (2022) | arXiv | DOI
[KH95] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl
[Kit99a] Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”, Nonlinearity, Volume 12 (1999) no. 6, pp. 1717-1719 | DOI | MR | Zbl
[Kit99b] Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity, Volume 12 (1999) no. 1, pp. 141-179 | DOI | MR | Zbl
[KM90] The convenient setting for real analytic mappings, Acta Math., Volume 165 (1990) no. 1-2, pp. 105-159 | DOI | MR | Zbl
[KM97] The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | DOI | MR | Zbl
[Kom79] The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad., Ser. A, Volume 55 (1979) no. 3, pp. 69-72 | DOI | MR | Zbl
[LG86] Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften, 282, Springer, 1986 | DOI | MR | Zbl
[LT06] Zeta functions and dynamical systems, Nonlinearity, Volume 19 (2006) no. 10, pp. 2467-2473 | DOI | MR | Zbl
[Man74] There are no new Anosov diffeomorphisms on tori, Am. J. Math., Volume 96 (1974), pp. 422-429 | DOI | MR | Zbl
[Mor58] The analytic embedding of abstract real-analytic manifolds, Ann. Math., Volume 68 (1958), pp. 159-201 | MR | Zbl | DOI
[Nau12] The Ruelle spectrum of generic transfer operators, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 7, pp. 2521-2531 | DOI | MR | Zbl
[Pie87] Eigenvalues and -numbers, Cambridge Studies in Advanced Mathematics, 13, Cambridge University Press, 1987, 360 pages | MR | Zbl
[PS22] Explicit examples of resonances for Anosov maps of the torus, Nonlinearity, Volume 36 (2022), pp. 110-132 | MR | DOI | Zbl
[Rue76] Zeta-functions for expanding maps and Anosov flows, Invent. Math., Volume 34 (1976) no. 3, pp. 231-242 | DOI | MR | Zbl
[Rug92] The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992) no. 6, pp. 1237-1263 | MR | Zbl | DOI
[Rug96] Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 4, pp. 805-819 | DOI | MR | Zbl
[SBJ17] Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, Volume 30 (2017) no. 7, pp. 2667-2686 | DOI | MR | Zbl
[SBJ22] Resonances for rational Anosov maps on the torus (2022) | arXiv
Cité par Sources :





