An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation
[Un problème inverse : estimer le noyau de fragmentation à partir du comportement en temps court de la solution de l’équation de fragmentation]
Annales Henri Lebesgue, Tome 7 (2024), pp. 621-671

Given a phenomenon described by a self-similar fragmentation equation, how to infer the fragmentation kernel from experimental measurements of the solution? To answer this question at the basis of our work, a formal asymptotic expansion suggested us that using short-time observations and initial data close to a Dirac measure should be a well-adapted strategy. As a necessary preliminary step, we study the direct problem, i.e. we prove existence, uniqueness and stability with respect to the initial data of non negative measure-valued solutions when the initial data is a compactly supported, bounded, non negative measure. A representation of the solution as a power series in the space of Radon measures is also shown. This representation is used to propose a reconstruction formula for the fragmentation kernel, using short-time experimental measurements when the initial data is close to a Dirac measure. We prove error estimates in Total Variation and Bounded Lipshitz norms; this gives a quantitative meaning to what a “short” time observation is. For general initial data in the space of compactly supported measures, we provide estimates on how the short-time measurements approximate the convolution of the fragmentation kernel with a suitably-scaled version of the initial data. The series representation also yields a reconstruction formula for the Mellin transform of the fragmentation kernel κ and an error estimate for such an approximation. Our analysis is complemented by a numerical investigation.

Comment, à partir de données expérimentales, retrouver le noyau de fragmentation κ associé à une population dont l’évolution est décrite par une équation de fragmentation  ? Un développement asymptotique formel autour de la donnée initiale nous laisse penser que la réponse réside dans le comportement en temps court de la solution, avec comme donnée initiale une masse de Dirac. Pour exploiter cette piste, notre première étape consiste à étudier le problème direct, et plus particulièrement à établir des résultats d’existence, unicité et stabilité par rapport à la donnée initiale de solutions mesures, et ce, dans le cas où la donnée initiale est mesure positive bornée à support compact. Au cours de cette première étape, nous exhibons la solution sous la forme d’une série entière dans l’espace des mesures de Radon. Nous nous servons cette représentation de la solution pour fournir une formule de reconstruction pour le noyau de fragmentation κ, en utilisant le profil de la solution à un temps t suffisamment court, dans le cas où la donnée initiale est une masse de Dirac. Dans ce cadre, nous contrôlons rigoureusement l’erreur sur l’estimation du noyau κ en variation totale (TV) et en norme “Bounded–Lipschitz”. Cette erreur dépendant en partie du temps t auquel la mesure est faite, ceci clarifie ce qu’une observation “en temps court” signifie. Dans le cas où la donnée initiale est une mesure de Radon générique (mais positive et à support compact), nous montrons qu’une observation de la solution en un temps suffisamment court permet d’approcher le produit de convolution entre le noyau κ et une homothétie de la donnée initiale. La représentation de la solution en série entière nous fournit également une formule de reconstruction pour la transformée de Mellin K du noyau de fragmentation κ, ainsi qu’une estimation de l’erreur pour cette formule approchée. Nous complétons notre analyse par des explorations numériques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.207
Classification : 35Q92, 35R06, 35R09, 45Q05, 46F12, 30D05
Keywords: Measure-valued solutions, Size-structured partial differential equation, Fragmentation equation, Inverse problem

Doumic, Marie  1   ; Escobedo, Miguel  2   ; Tournus, Magali  3

1 Ecole Polytechnique, Inria, CNRS, Institut Polytechnique de Paris route de Saclay, 91128 Palaiseau Cedex (France)
2 Departamento de Matemáticas Universidad del País Vasco (UPV/EHU) Apartado 644, Bilbao 48080 (Spain)
3 Aix Marseille Univ, CNRS, I2M, Marseille, Centrale Marseille (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__621_0,
     author = {Doumic, Marie and Escobedo, Miguel and Tournus, Magali},
     title = {An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation},
     journal = {Annales Henri Lebesgue},
     pages = {621--671},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.207},
     zbl = {1547.35695},
     mrnumber = {4799906},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.207/}
}
TY  - JOUR
AU  - Doumic, Marie
AU  - Escobedo, Miguel
AU  - Tournus, Magali
TI  - An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 621
EP  - 671
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.207/
DO  - 10.5802/ahl.207
LA  - en
ID  - AHL_2024__7__621_0
ER  - 
%0 Journal Article
%A Doumic, Marie
%A Escobedo, Miguel
%A Tournus, Magali
%T An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation
%J Annales Henri Lebesgue
%D 2024
%P 621-671
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.207/
%R 10.5802/ahl.207
%G en
%F AHL_2024__7__621_0
Doumic, Marie; Escobedo, Miguel; Tournus, Magali. An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation. Annales Henri Lebesgue, Tome 7 (2024), pp. 621-671. doi: 10.5802/ahl.207

[AD02] Agoshkov, V. I.; Dubovski, P. B. Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation, Russ. J. Numer. Anal. Math. Model., Volume 17 (2002) no. 4, pp. 319-330 | DOI | Zbl | MR

[AD13] Alomari, O.; Dubovski, P. B. Recovery of the integral kernel in the kinetic fragmentation equation, Inverse Probl. Sci. Eng., Volume 21 (2013) no. 1, pp. 171-181 | DOI | Zbl | MR

[BA06] Banasiak, J.; Arlotti, L. Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer, 2006 | Zbl | MR

[BC90] Ball, J. M.; Carr, J. The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., Volume 61 (1990) no. 1-2, pp. 203-234 | DOI | Zbl | MR

[BCG13] Balagué, D.; Cañizo, J. A.; Gabriel, P. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, Volume 6 (2013) no. 2, pp. 219-243 | DOI | Zbl | MR

[BCGM22] Bansaye, V.; Cloez, B.; Gabriel, P.; Marguet, A. A non-conservative Harris ergodic theorem, J. Lond. Math. Soc., Volume 106 (2022) no. 3, pp. 2459-2510 | DOI | Zbl | MR

[Ber03] Bertoin, J. The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc., Volume 5 (2003) no. 4, pp. 395-416 | Zbl | MR | DOI

[Ber06] Bertoin, J. Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102, Cambridge University Press, 2006 | DOI | Zbl | MR

[BL05] Baumeister, J.; Leitão, A. Topics in inverse problems, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2005 (25 o Colóquio Brasileiro de Matemática. [25th Brazilian Mathematics Colloquium]) | Zbl | MR

[BLL19] Banasiak, J.; Lamb, W.; Laurencot, P. Analytic Methods for Coagulation-Fragmentation Models, I, Monographs and Research Notes in Mathematics, Chapman et Hall; CRC Press, 2019 | DOI | Zbl | MR

[BTM + 20] Beal, D. M.; Tournus, M.; Marchante, R.; Purton, T.; Smith, D. P.; Tuite, M. F.; Doumic, M.; Xue, W.-F. The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments, iScience, Volume 23 (2020) no. 9, 101512 | DOI

[BW16] Bertoin, J.; Watson, A. R. Probabilistic aspects of critical growth-fragmentation equations, Adv. Appl. Probab., Volume 48 (2016) no. A, pp. 37–-61 | DOI | Zbl | MR

[CCGU12] Carrillo, J. A.; Colombo, R. M.; Gwiazda, P.; Ulikowska, A. Structured populations, cell growth and measure valued balance laws, J. Differ. Equations, Volume 252 (2012) no. 4, pp. 3245-3277 | DOI | Zbl | MR

[CCM11] Cáceres, M. J.; Cañizo, J. A.; Mischler, S. Rate of convergence to the remarkable state for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl., Volume 96 (2011) no. 4, pp. 334-362 | Zbl | MR | DOI

[CP06] Cao, H.; Pereverzev, S. V. Natural linearization for the identification of a diffusion coefficient in a quasi-linear parabolic system from short-time observations, Inverse Probl., Volume 22 (2006) no. 6, pp. 2311-2330 | Zbl | MR | DOI

[DET18] Doumic, M.; Escobedo, M.; Tournus, M. Estimating the division rate and kernel in the fragmentation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 7, pp. 1847-1884 | DOI | MR | Zbl | Numdam

[DETX21] Doumic, M.; Escobedo, M.; Tournus, M.; Xue, W.-F. Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation, PLoS Comput. Biol., Volume 17 (2021) no. 9, p. 21 | DOI

[Die68] Dieudonné, J. Calcul infinitésimal, Collection méthodes, Hermann, 1968 | MR | Zbl

[DS96] Dubovski, P. B.; Stewart, I. W. Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., Volume 19 (1996), pp. 571-591 | Zbl | MR | DOI

[DvB18] Doumic, M.; van Brunt, B. Explicit solution and fine asymptotics for a critical growth-fragmentation equation, CIMPA School on Mathematical Models in Biology and Medicine (ESAIM: Proceedings and Surveys), Volume 62, EDP Sci., Les Ulis, 2018, pp. 30-42 | MR | Zbl

[EHN96] Engl, H. W.; Hanke, M.; Neubauer, A. Regularization of inverse problems, Mathematics and its Applications, 375, Springer, 1996 | Zbl | MR | DOI

[EMR05] Escobedo, M.; Mischler, S.; Ricard, R. M. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | Zbl | MR | DOI | Numdam

[Fil61] Filippov, A. F. On the Distribution of the Sizes of Particles which Undergo Splitting, Theory Probab. Appl., Volume 6 (1961) no. 3, pp. 275-294 | DOI | Zbl

[GN16] Giné, E.; Nickl, R. Mathematical foundations of infinite-dimensional statistical models, Cambridge Series in Statistical and Probabilistic Mathematics, 40, Cambridge University Press, 2016 | DOI | MR | Zbl

[Haa10] Haas, B. Asymptotic behavior of solutions of the fragmentation equation with shattering: An approach via self-similar Markov processes, Ann. Appl. Probab., Volume 20 (2010) no. 2, p. 382-–429 | Zbl | MR | DOI

[Han99] Hanin, L. G An extension of the Kantorovich norm, Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997) (Contemporary Mathematics), Volume 226, American Mathematical Society, 1999, pp. 113-130 | Zbl | MR

[HHTW19] Honoré, S.; Hubert, F.; Tournus, M.; White, D. A growth-fragmentation approach for modeling microtubule dynamic instability, Bull. Math. Biol., Volume 81 (2019) no. 3, pp. 722-758 | DOI | MR | Zbl

[HKLT24] Hellmuth, K.; Klingenberg, C.; Li, Q.; Tang, M. Kinetic chemotaxis tumbling kernel determined from macroscopic quantities, SIAM J. Math. Anal., Volume 56 (2024) no. 1, pp. 568-587 | DOI | MR

[HPNRT19] Hoang, V. H.; Pham Ngoc, T. M.; Rivoirard, V.; Tran, V. C. Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation, Scand. J. Statist., Volume 49 (2019), pp. 4-43 | DOI | Zbl | MR

[KK05] Kostoglou, M.; Karabelas, A. J. On the self-similar solution of fragmentation equation: Numerical evaluation with implications for the inverse problem, J. Colloid Interface Sci., Volume 284 (2005), pp. 571-581 | DOI

[Kol41] Kolmogorov, A. N. On the logarithmic normal distribution of particle sizes under grinding, Dokl. Akad. Nauk SSSR, Volume 31 (1941), pp. 99-101

[LCL19] Li, Z.; Cheng, X.; Li, G. An inverse problem in time-fractional diffusion equations with nonlinear boundary condition, J. Math. Phys., Volume 60 (2019) no. 9, 091502 | Zbl | MR

[Mel57] Melzak, Z. A. A Scalar Transport Equation, Trans. Am. Math. Soc., Volume 85 (1957) no. 2, pp. 547-560 | Zbl | DOI | MR

[ML86] Misra, O. P.; Lavoine, J. L. Transform analysis of generalized functions, North-Holland Mathematics Studies, 119, North-Holland, 1986 | Zbl | MR

[MLM97] McLaughlin, D. J.; Lamb, W.; McBride, A. C. An Existence and Uniqueness Result for a Coagulation and Multiple-Fragmentation Equation, SIAM J. Math. Anal., Volume 28 (1997) no. 5, pp. 1173-1190 | DOI | Zbl | MR

[MS40] Montroll, E. W.; Simha, R. Theory of Depolymerization of Long Chain Molecules, J. Chem. Phys., Volume 8 (1940), pp. 721-726 | DOI

[Nor99] Norris, J. R. Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., Volume 9 (1999) no. 1, pp. 78-109 | DOI | MR | Zbl

[NRG80] Narsimhan, G.; Ramkrishna, D.; Gupta, J. P. Analysis of drop size distributions in lean liquid-liquid dispersions, AIChE J., Volume 26 (1980) no. 6, pp. 991-1000 | DOI

[Per07] Perthame, B. Transport equations in biology, Frontiers in Mathematics, Birkhäuser, 2007 | MR | Zbl | DOI

[PR05] Perthame, B.; Ryzhik, L. Exponential decay for the fragmentation or cell-division equation, J. Differ. Equations, Volume 210 (2005) no. 1, pp. 155-177 | MR | DOI | Zbl

[PR14] Piccoli, B.; Rossi, F. Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 335-358 | DOI | MR | Zbl

[PRT23] Piccoli, B.; Rossi, F.; Tournus, M. A Wasserstein norm for signed measures, with application to non local transport equation with source term, Commun. Math. Sci., Volume 21 (2023) no. 5, pp. 1279-1301 | MR | Zbl | DOI

[Ram74] Ramkrishna, D. Drop-breakage in agitated liquid-liquid dispersions, Chem. Eng. Sci., Volume 29 (1974), pp. 987-992 | DOI

[Ste90] Stewart, I. W. On the coagulation-fragmentation equation, Z. Angew. Math. Phys., Volume 41 (1990) no. 6, pp. 917-924 | MR | DOI | Zbl

[VBA66] Valentas, K. J.; Bilous, O.; Amundson, N. R. Analysis of Breakage in Dispersed Phase Systems, Ind. Eng. Chem. Fundamen., Volume 5 (1966) no. 2, pp. 271-279 | DOI

[Vil03] Villani, C. Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003 | DOI | MR | Zbl

[XHR09] Xue, W.-F.; Homans, S. W.; Radford, S. E. Amyloid fibril length distribution quantified by atomic force microscopy single-particle image analysis, Protein Eng. Des. Sel., Volume 22 (2009) no. 8, pp. 489-496 | DOI

[XR13] Xue, W.-F.; Radford, S. E. An Imaging and Systems Modeling Approach to Fibril Breakage Enables Prediction of Amyloid Behavior, Biophys. Journal, Volume 105 (2013), pp. 2811-2819 | DOI

[ZM85] Ziff, R. M.; McGrady, E. D. The kinetics of cluster fragmentation and depolymerisation, J. Phys. A. Math. Gen., Volume 18 (1985), pp. 3027-3037 | MR | Zbl | DOI

[ZM86] Ziff, R. M.; McGrady, E. D. Kinetics of polymer degradation, Macromolecules, Volume 19 (1986) no. 10, pp. 2513-2519 | DOI

Cité par Sources :