Braid stability and the Hofer metric
[Stabilité des tresses et métrique de Hofer]
Annales Henri Lebesgue, Tome 7 (2024), pp. 521-581

In this article we show that the braid type of a set of 1-periodic orbits of a non-degenerate Hamiltonian diffeomorphism on a surface is stable under perturbations which are sufficiently small with respect to the Hofer metric d Hofer . We call this new phenomenon braid stability for the Hofer metric.

We apply braid stability to study the stability of the topological entropy h top of Hamiltonian diffeomorphisms on surfaces under small perturbations with respect to d Hofer . We show that h top is lower semicontinuous on the space of Hamiltonian diffeomorphisms of a closed surface endowed with the Hofer metric, and on the space of compactly supported diffeomorphisms of the two-dimensional disk 𝔻 endowed with the Hofer metric. This answers the two-dimensional case of a question of Polterovich.

En route to proving the lower semicontinuity of h top with respect to d Hofer , we prove that the topological entropy of a diffeomorphism φ on a compact surface can be recovered from the braid types realized by the periodic orbits of φ.

Dans cet article, nous montrons que le type de tresse d’un ensemble de points fixes d’un difféomorphisme hamiltonien non-dégénéré d’une surface est stable sous des perturbations suffisamment petites par rapport à la métrique de Hofer d Hofer . Nous appelons ce nouveau phénomène stabilité des tresses pour la métrique de Hofer.

Nous appliquons la stabilité des tresses pour étudier la stabilité de l’entropie topologique h top des difféomorphismes hamiltoniens des surfaces par rapport à de petites perturbations pour d Hofer . Nous montrons que h top est semi-continue inférieurement sur l’espace des difféomorphismes hamiltoniens d’une surface fermée, muni de la métrique de Hofer, et sur l’espace des difféomorphismes à support compact du disque bidimensionnel 𝔻 muni de la métrique Hofer. Cela répond au cas bidimensionnel d’une question de Polterovitch.

Afin de prouver la semi-continuité inférieure de h top par rapport à d Hofer , nous montrons que l’entropie topologique d’un difféomorphisme φ d’une surface compacte peut être reconstituée à partir des types de tresses réalisés par les orbites périodiques de φ.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.205
Classification : 37E30, 37B40, 37J10, 53D40
Keywords: Low-dimensional dynamical systems, Topological entropy, Hamiltonian systems, Floer homology

Alves, Marcelo R.R.  1   ; Meiwes, Matthias  2

1 Faculty of Science, University of Antwerp, Campus Middelheim, Middelheimlaan 1, BE-2020 Antwerpen (Belgium)
2 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__521_0,
     author = {Alves, Marcelo R.R. and Meiwes, Matthias},
     title = {Braid stability and the {Hofer} metric},
     journal = {Annales Henri Lebesgue},
     pages = {521--581},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.205},
     zbl = {07914800},
     mrnumber = {4799904},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.205/}
}
TY  - JOUR
AU  - Alves, Marcelo R.R.
AU  - Meiwes, Matthias
TI  - Braid stability and the Hofer metric
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 521
EP  - 581
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.205/
DO  - 10.5802/ahl.205
LA  - en
ID  - AHL_2024__7__521_0
ER  - 
%0 Journal Article
%A Alves, Marcelo R.R.
%A Meiwes, Matthias
%T Braid stability and the Hofer metric
%J Annales Henri Lebesgue
%D 2024
%P 521-581
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.205/
%R 10.5802/ahl.205
%G en
%F AHL_2024__7__521_0
Alves, Marcelo R.R.; Meiwes, Matthias. Braid stability and the Hofer metric. Annales Henri Lebesgue, Tome 7 (2024), pp. 521-581. doi: 10.5802/ahl.205

[AASS23] Abbondandolo, Alberto; Alves, Marcelo R. R.; Sağlam, Murat; Schlenk, Felix Entropy collapse versus entropy rigidity for Reeb and Finsler flows, Sel. Math., New Ser., Volume 29 (2023) no. 5, 67 | Zbl | DOI | MR

[ACH19] Alves, Marcelo R. R.; Colin, Vincent; Honda, Ko Topological entropy for Reeb vector fields in dimension three via open book decompositions, J. Éc. Polytech., Math., Volume 6 (2019), pp. 119-148 | DOI | MR | Zbl | Numdam

[ADMM22] Alves, Marcelo R. R.; Dahinden, Lucas; Meiwes, Matthias; Merlin, Louis C 0 -robustness of topological entropy for geodesic flows, J. Fixed Point Theory Appl., Volume 24 (2022) no. 2, 42 | MR | DOI | Zbl

[ADMP23] Alves, Marcelo R. R.; Dahinden, Lucas; Meiwes, Matthias; Pirnapasov, Abror C 0 -stability of topological entropy for Reeb flows in dimension 3 (2023) | arXiv

[Alv16a] Alves, Marcelo R. R. Cylindrical contact homology and topological entropy, Geom. Topol., Volume 20 (2016) no. 6, pp. 3519-3569 | MR | DOI | Zbl

[Alv16b] Alves, Marcelo R. R. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds, J. Mod. Dyn., Volume 10 (2016), pp. 497-509 | DOI | MR | Zbl

[Alv19] Alves, Marcelo R. R. Legendrian contact homology and topological entropy, J. Topol. Anal., Volume 11 (2019) no. 1, pp. 53-108 | DOI | MR | Zbl

[AM19] Alves, Marcelo R. R.; Meiwes, Matthias Dynamically exotic contact spheres of dimensions 7, Comment. Math. Helv., Volume 94 (2019) no. 3, pp. 569-622 | DOI | MR | Zbl

[AP22] Alves, Marcelo R. R.; Pirnapasov, Abror Reeb orbits that force topological entropy, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 10, pp. 3025-3068 | DOI | MR | Zbl

[Bir75] Birman, Joan S. Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press; University of Tokyo Press, 1975 | MR | Zbl | DOI

[BM19] Brandenbursky, Michael; Marcinkowski, Michał Entropy and quasimorphisms, J. Mod. Dyn., Volume 15 (2019), pp. 143-163 | DOI | MR | Zbl

[Bow78] Bowen, Rufus Entropy and the fundamental group, The Structure of Attractors in Dynamical Systems (Markley, Nelson G.; Martin, John C.; Perrizo, William, eds.) (Lecture Notes in Mathematics), Volume 668, Springer, 1978, pp. 21-29 | DOI | Zbl

[Boy94] Boyland, Philip Topological methods in surface dynamics, Topology Appl., Volume 58 (1994) no. 3, pp. 223-298 | DOI | MR | Zbl

[BP07] Barreira, Luis; Pesin, Yakov Nonuniform hyperbolicity, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007 (Dynamics of systems with nonzero Lyapunov exponents) | DOI | MR | Zbl

[Cho22] Chor, Arnon Eggbeater dynamics on symplectic surfaces of genus 2 and 3, Ann. Math. Qué. (2022), pp. 1-30 | MR | DOI

[CM23] Chor, Arnon; Meiwes, Matthias Hofer’s geometry and topological entropy, Compos. Math., Volume 159 (2023) no. 6, pp. 1250-1299 | MR | Zbl | DOI

[CO18] Cieliebak, Kai; Oancea, Alexandru Symplectic homology and the Eilenberg-Steenrod axioms, Algebr. Geom. Topol., Volume 18 (2018) no. 4, pp. 1953-2130 (Appendix written jointly with Peter Albers) | DOI | MR | Zbl

[Dah18] Dahinden, Lucas Lower complexity bounds for positive contactomorphisms, Isr. J. Math., Volume 224 (2018) no. 1, pp. 367-383 | MR | DOI | Zbl

[Dah20] Dahinden, Lucas Positive topological entropy of positive contactomorphisms, J. Symplectic Geom., Volume 18 (2020) no. 3, pp. 691-732 | DOI | MR | Zbl

[Dah21] Dahinden, Lucas C 0 -stability of topological entropy for contactomorphisms, Commun. Contemp. Math., Volume 23 (2021) no. 6, 2150015 | DOI | MR | Zbl

[EKP06] Eliashberg, Yakov; Kim, Sang Seon; Polterovich, Leonid Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol., Volume 10 (2006), pp. 1635-1747 | DOI | MR | Zbl

[FH88] Franks, John M.; Handel, Michael Entropy and exponential growth of π 1 in dimension two, Proc. Am. Math. Soc., Volume 102 (1988) no. 3, pp. 753-760 | DOI | MR | Zbl

[FH94] Floer, Andreas; Hofer, Helmut Symplectic homology. I. Open sets in C n , Math. Z., Volume 215 (1994) no. 1, pp. 37-88 | DOI | MR | Zbl

[FHS95] Floer, Andreas; Hofer, Helmut; Salamon, Dietmar Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., Volume 80 (1995) no. 1, pp. 251-292 | DOI | MR | Zbl

[Flo88] Floer, Andreas The unregularized gradient flow of the symplectic action, Commun. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 775-813 | DOI | MR | Zbl

[FM02] Franks, John M.; Misiurewicz, Michał Topological methods in dynamics, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 547-598 | DOI | MR | Zbl

[FS06] Frauenfelder, Urs; Schlenk, Felix Fiberwise volume growth via Lagrangian intersections, J. Symplectic Geom., Volume 4 (2006) no. 2, pp. 117-148 | MR | Zbl | DOI

[Gin10] Ginzburg, Viktor L. The Conley conjecture, Ann. Math., Volume 172 (2010) no. 2, pp. 1127-1180 | Zbl | DOI | MR

[GVW15] van den Berg, Jan B.; Ghrist, Robert; Vandervorst, Robert C.; Wójcik, Wojciech Braid Floer homology, J. Differ. Equations, Volume 259 (2015) no. 5, pp. 1663-1721 | DOI | MR | Zbl

[Hal94] Hall, Toby The creation of horseshoes, Nonlinearity, Volume 7 (1994) no. 3, pp. 861-924 | MR | Zbl | DOI

[Hof90] Hofer, Helmut On the topological properties of symplectic maps, Proc. R. Soc. Edinb., Sect. A, Math., Volume 115 (1990) no. 1-2, pp. 25-38 | MR | Zbl | DOI

[Kat80] Katok, Anatole Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci. (1980) no. 51, pp. 137-173 | MR | Zbl | Numdam | DOI

[Kat84] Katok, Anatole Nonuniform hyperbolicity and structure of smooth dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw (1984), pp. 1245-1253 | MR | Zbl

[KH95] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl

[Kha21] Khanevsky, Michael Non-autonomous curves on surfaces, J. Mod. Dyn., Volume 17 (2021), pp. 305-317 | DOI | MR | Zbl

[KS21] Kislev, Asaf; Shelukhin, Egor Bounds on spectral norms and barcodes, Geom. Topol., Volume 25 (2021) no. 7, pp. 3257-3350 | DOI | MR | Zbl

[Mat05] Matsuoka, Takashi Periodic points and braid theory, Handbook of topological fixed point theory, Springer, 2005, pp. 171-216 | DOI | MR | Zbl

[Mei23] Meiwes, Matthias Topological entropy and orbit growth in link complements (2023) | arXiv

[Mis71] Misiurewicz, Michał On non-continuity of topological entropy, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Volume 19 (1971), pp. 319-320 | MR | Zbl

[MS11] Macarini, Leonardo; Schlenk, Felix Positive topological entropy of Reeb flows on spherizations, Math. Proc. Camb. Philos. Soc., Volume 151 (2011) no. 1, pp. 103-128 | MR | Zbl | DOI

[New89] Newhouse, Sheldon E. Continuity properties of entropy, Ann. Math., Volume 129 (1989) no. 2, pp. 215-235 | DOI | MR | Zbl

[Nit71] Nitecki, Zbigniew On semi-stability for diffeomorphisms, Invent. Math., Volume 14 (1971), pp. 83-122 | DOI | MR | Zbl

[Pol01] Polterovich, Leonid The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2001 | DOI | MR | Zbl

[PRSZ20] Polterovich, Leonid; Rosen, Daniel; Samvelyan, Karina; Zhang, Jun Topological Persistence in Geometry and Analysis, University Lecture Series, 74, American Mathematical Society, 2020 | MR | Zbl | DOI

[PS16] Polterovich, Leonid; Shelukhin, Egor Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Sel. Math., New Ser., Volume 22 (2016) no. 1, pp. 227-296 | MR | Zbl | DOI

[Sch00] Schwarz, Matthias On the action spectrum for closed symplectically aspherical manifolds, Pac. J. Math., Volume 193 (2000) no. 2, pp. 419-461 | MR | Zbl | DOI

[Ush11] Usher, Michael Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Isr. J. Math., Volume 184 (2011), pp. 1-57 | DOI | MR | Zbl

[Yom87] Yomdin, Yosef Volume growth and entropy, Isr. J. Math., Volume 57 (1987) no. 3, pp. 285-300 | MR | DOI | Zbl

[ÇGG21] Çineli, Erman; Ginzburg, Viktor L.; Gürel, Başak Z. Topological entropy of Hamiltonian diffeomorphisms: a persistence homology and Floer theory perspective (2021) | arXiv

Cité par Sources :