[Représentations topologiques des groupes de mouvement et des groupes de difféotopie – Une construction fonctorielle unifiée]
For groups of a topological origin, such as braid groups and mapping class groups, an important source of interesting and highly non-trivial representations is given by their actions on the twisted homology of associated spaces; these are known as homological representations. Representations of this kind have proved themselves especially important for the question of linearity, a key example being the family of topologically-defined representations introduced by Lawrence and Bigelow, and used by Bigelow and Krammer to prove that braid groups are linear. In this paper, we give a unified foundation for the construction of homological representations using a functorial approach. Namely, we introduce homological representation functors encoding a large class of homological representations, defined on categories containing all mapping class groups and motion groups in a fixed dimension. These source categories are defined using a topological enrichment of the Quillen bracket construction applied to categories of decorated manifolds. This approach unifies many previously-known constructions, including those of Lawrence–Bigelow, and yields many new representations.
Une source majeure de représentations intéressantes et grandement non-triviales pour les groupes ayant une origine topologique, tels que les groupes de tresses et les groupes de difféotopie, est donnée par leurs actions sur de l’homologie tordue d’espaces associés ; celles-ci sont connues sous le nom de représentations homologiques. Les représentations de ce type se sont montrées particulièrement importantes pour les questions de linéarité, un exemple clef étant celui de la famille de représentations définies topologiquement par Lawrence et Bigelow, et utilisée par Bigelow et Krammer pour démontrer que les groupes de tresses sont linéaires. Dans cet article, nous établissons des fondations unifiées pour la construction de représentations homologiques en utilisant des méthodes fonctorielles. Plus précisément, nous introduisons des foncteurs de représentations homologiques, qui encodent de larges classes de représentations homologiques, et qui sont définis sur des catégories contenant tous les groupes de difféotopie et tous les groupes de mouvement pour une dimension fixée. Ces catégories sources sont définies à partir d’un enrichissement topologique de la construction de support due à Quillen, que l’on applique à des catégories de variétés décorées. Cette approche unifie de nombreuses constructions déjà connues, y compris celles de Lawrence et Bigelow, et produit beaucoup de nouvelles représentations.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.204
Keywords: Homological representations, mapping class groups, surface braid groups, loop braid groups, motion groups, Lawrence–Bigelow representations
Palmer, Martin  1 ; Soulié, Arthur  2
CC-BY 4.0
@article{AHL_2024__7__409_0,
author = {Palmer, Martin and Souli\'e, Arthur},
title = {Topological representations of motion groups and mapping class groups {\textendash} a unified functorial construction},
journal = {Annales Henri Lebesgue},
pages = {409--519},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.204},
mrnumber = {4799903},
zbl = {1548.20010},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.204/}
}
TY - JOUR AU - Palmer, Martin AU - Soulié, Arthur TI - Topological representations of motion groups and mapping class groups – a unified functorial construction JO - Annales Henri Lebesgue PY - 2024 SP - 409 EP - 519 VL - 7 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.204/ DO - 10.5802/ahl.204 LA - en ID - AHL_2024__7__409_0 ER -
%0 Journal Article %A Palmer, Martin %A Soulié, Arthur %T Topological representations of motion groups and mapping class groups – a unified functorial construction %J Annales Henri Lebesgue %D 2024 %P 409-519 %V 7 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.204/ %R 10.5802/ahl.204 %G en %F AHL_2024__7__409_0
Palmer, Martin; Soulié, Arthur. Topological representations of motion groups and mapping class groups – a unified functorial construction. Annales Henri Lebesgue, Tome 7 (2024), pp. 409-519. doi: 10.5802/ahl.204
[AK10] A family of representations of braid groups on surfaces, Pac. J. Math., Volume 247 (2010) no. 2, pp. 257-282 | DOI | MR | Zbl
[BB01] The mapping class group of a genus two surface is linear, Algebr. Geom. Topol., Volume 1 (2001), pp. 699-708 | DOI | MR | Zbl
[BB05] Braids: a survey, Handbook of knot theory, Elsevier, 2005, pp. 19-103 | DOI | Zbl
[BB23] Decoupling decorations on moduli spaces of manifolds, Math. Proc. Camb. Philos. Soc., Volume 174 (2023) no. 1, pp. 163-198 | DOI | MR | Zbl
[Bel04] On presentations of surface braid groups, J. Algebra, Volume 274 (2004) no. 2, pp. 543-563 | Zbl | DOI | MR
[BGG17] Abelian and metabelian quotient groups of surface braid groups, Glasg. Math. J., Volume 59 (2017) no. 1, pp. 119-142 | DOI | MR | Zbl
[BHT01] On the linearity problem for mapping class groups, Algebr. Geom. Topol., Volume 1 (2001), pp. 445-468 | DOI | MR | Zbl
[Big01] Braid groups are linear, J. Am. Math. Soc., Volume 14 (2001) no. 2, pp. 471-486 | MR | DOI | Zbl
[Bol12] Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z., Volume 270 (2012) no. 1-2, pp. 297-329 | DOI | MR | Zbl
[BPS21] Heisenberg homology on surface configurations (2021) | arXiv
[Bre97] Sheaf theory, Graduate Texts in Mathematics, 170, Springer, 1997 | DOI | MR | Zbl
[Bro60] A proof of the generalized Schoenflies theorem, Bull. Am. Math. Soc., Volume 66 (1960), pp. 74-76 | DOI | MR | Zbl
[Bro62] Locally flat imbeddings of topological manifolds, Ann. Math., Volume 75 (1962), pp. 331-341 | DOI | MR | Zbl
[BT01] Stripping and splitting decorated mapping class groups, Cohomological methods in homotopy theory (Bellaterra, 1998) (Progress in Mathematics), Volume 196, Birkhäuser, 2001, pp. 47-57 | DOI | MR | Zbl
[Bur35] Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Semin. Univ. Hamb., Volume 11 (1935) no. 1, pp. 179-186 | MR | DOI | Zbl
[But16] Mapping class groups are not linear in positive characteristic (2016) | arXiv
[Cer61] Topologie de certains espaces de plongements, Bull. Soc. Math. Fr., Volume 89 (1961), pp. 227-380 | DOI | MR | Zbl | Numdam
[Cer68] Sur les difféomorphismes de la sphère de dimension trois , Lecture Notes in Mathematics, 53, Springer, 1968 | MR | Zbl
[Dam17] A journey through loop braid groups, Expo. Math., Volume 35 (2017) no. 3, pp. 252-285 | DOI | MR | Zbl
[DK01] Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35, American Mathematical Society, 2001 | DOI | MR | Zbl
[DPS22] When the lower central series stops: a comprehensive study for braid groups and their relatives (2022) (to appear in the Memoirs of the American Mathematical Society) | arXiv
[DV19] Foncteurs faiblement polynomiaux, Int. Math. Res. Not. (2019) no. 2, pp. 321-391 | DOI | MR | Zbl
[EN02] Representation type of Hecke algebras of type , Trans. Am. Math. Soc., Volume 354 (2002) no. 1, pp. 275-285 | DOI | MR | Zbl
[Eps66] Curves on -manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 | DOI | MR | Zbl
[FM11] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2011 | MR | Zbl | DOI
[FP92] The automorphism group of a free group is not linear, J. Algebra, Volume 149 (1992) no. 2, pp. 494-499 | DOI | MR | Zbl
[Gal21] Lecture on invertible field theories, Quantum field theory and manifold invariants (IAS/Park City Mathematics Series), Volume 28, American Mathematical Society, 2021, pp. 347-402 | MR | DOI
[GK95] Cyclic operads and cyclic homology, Geometry, topology, & physics for Raoul Bott (Conference Proceedings and Lecture Notes in Geometry and Topology), Volume 4, International Press, 1995, pp. 167-201 | MR | Zbl
[Gra73] Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973) no. 1, pp. 53-66 | MR | DOI | Zbl | Numdam
[Gra76] Higher algebraic -theory. II (after Daniel Quillen), Algebraic -theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) (Lecture Notes in Mathematics), Volume 551, Springer, 1976, pp. 217-240 | MR | Zbl
[Hat02] Algebraic topology, Cambridge University Press, 2002 | MR | Zbl
[HEO05] Handbook of computational group theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2005 | DOI | MR | Zbl
[Hir76] Differential topology, Graduate Texts in Mathematics, 33, Springer, 1976 | MR | Zbl | DOI
[HOL02] Knot theory in handlebodies, J. Knot Theory Ramifications, Volume 11 (2002) no. 6, pp. 921-943 Knots 2000 Korea, Vol. 3 (Yongpyong) | DOI | MR | Zbl
[Iva93] On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) (Contemporary Mathematics), Volume 150, American Mathematical Society, 1993, pp. 149-194 | DOI | MR | Zbl
[KLS19] An effective Lie–Kolchin theorem for quasi-unipotent matrices, Linear Algebra Appl., Volume 581 (2019), pp. 304-323 | DOI | MR | Zbl
[Kor02] Low-dimensional homology groups of mapping class groups: a survey, Turk. J. Math., Volume 26 (2002) no. 1, pp. 101-114 | MR | Zbl
[Kra02] Braid groups are linear, Ann. Math., Volume 155 (2002) no. 1, pp. 131-156 | DOI | MR | Zbl
[Kra19] Homological stability of topological moduli spaces, Geom. Topol., Volume 23 (2019) no. 5, pp. 2397-2474 | DOI | MR | Zbl
[Law90] Homological representations of the Hecke algebra, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 141-191 | MR | Zbl | DOI
[Lim63] On the local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 38 (1963), pp. 163-164 | DOI | MR | Zbl
[Mar19] Problems, questions, and conjectures about mapping class groups, Breadth in contemporary topology (Proceedings of Symposia in Pure Mathematics), Volume 102, American Mathematical Society, 2019, pp. 157-186 | MR | Zbl | DOI
[Mat69] Stability of mappings. II. Infinitesimal stability implies stability, Ann. Math., Volume 89 (1969), pp. 254-291 | DOI | MR | Zbl
[Maz59] On embeddings of spheres, Bull. Am. Math. Soc., Volume 65 (1959), pp. 59-65 | DOI | MR | Zbl
[Mil65] Lectures on the -cobordism theorem, Princeton University Press, 1965 (notes by L. Siebenmann and J. Sondow) | MR | Zbl | DOI
[ML98] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | MR | Zbl
[MMSS01] Model categories of diagram spectra, Proc. Lond. Math. Soc., Volume 82 (2001) no. 2, pp. 441-512 | DOI | MR | Zbl
[Mor60] A reduction of the Schoenflies extension problem, Bull. Am. Math. Soc., Volume 66 (1960), pp. 113-115 | DOI | MR | Zbl
[Mor07] The mapping class group action on the homology of the configuration spaces of surfaces, J. Lond. Math. Soc., Volume 76 (2007) no. 2, pp. 451-466 | DOI | MR | Zbl
[Pal60a] Extending diffeomorphisms, Proc. Am. Math. Soc., Volume 11 (1960), pp. 274-277 | DOI | MR | Zbl
[Pal60b] Local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 34 (1960), pp. 305-312 | DOI | MR | Zbl
[Pal18] Twisted homological stability for configuration spaces, Homology Homotopy Appl., Volume 20 (2018) no. 2, pp. 145-178 | MR | DOI | Zbl
[Pal21] Homological stability for moduli spaces of disconnected submanifolds, I, Algebr. Geom. Topol., Volume 21 (2021) no. 3, pp. 1371-1444 | DOI | MR | Zbl
[PS22a] The Burau representations of loop braid groups, C. R. Math., Volume 360 (2022), pp. 781-797 | DOI | MR | Zbl | Numdam
[PS22b] The pro-nilpotent Lawrence–Krammer–Bigelow representation (2022) | arXiv
[PS23] Polynomiality of surface braid and mapping class group representations (2023) | arXiv
[RWW17] Homological stability for automorphism groups, Adv. Math., Volume 318 (2017), pp. 534-626 | DOI | MR | Zbl
[Sch06] Beiträge zur Theorie der Punktmengen. III, Math. Ann., Volume 62 (1906) no. 2, pp. 286-328 | Zbl | DOI | MR
[Sma59] Diffeomorphisms of the -sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | DOI | MR | Zbl
[SP] Skeleton of a braided monoidal category, MathOverflow (URL: https://mathoverflow.net/q/31599)
[Ste51] The Topology of Fibre Bundles, Princeton Mathematical Series, 14, Princeton University Press, 1951 | MR | Zbl | DOI
[Stu06] Dehn twists on nonorientable surfaces, Fundam. Math., Volume 189 (2006) no. 2, pp. 117-147 | DOI | MR | Zbl
[Stu10] Generating mapping class groups of nonorientable surfaces with boundary, Adv. Geom., Volume 10 (2010) no. 2, pp. 249-273 | DOI | MR | Zbl
[Sup76] Matrix groups, Translations of Mathematical Monographs, 45, American Mathematical Society, 1976 (translated from the Russian and edited by K. A. Hirsch) | MR | Zbl | DOI
[Suz05] Geometric interpretation of the Magnus representation of the mapping class group, Kobe J. Math., Volume 22 (2005) no. 1-2, pp. 39-47 | MR | Zbl
[The24] The Stacks project, 2024 (https://stacks.math.columbia.edu)
[TV08] Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc., Volume 193 (2008) no. 902 | DOI | MR | Zbl
Cité par Sources :





