Topological representations of motion groups and mapping class groups – a unified functorial construction
[Représentations topologiques des groupes de mouvement et des groupes de difféotopie – Une construction fonctorielle unifiée]
Annales Henri Lebesgue, Tome 7 (2024), pp. 409-519

For groups of a topological origin, such as braid groups and mapping class groups, an important source of interesting and highly non-trivial representations is given by their actions on the twisted homology of associated spaces; these are known as homological representations. Representations of this kind have proved themselves especially important for the question of linearity, a key example being the family of topologically-defined representations introduced by Lawrence and Bigelow, and used by Bigelow and Krammer to prove that braid groups are linear. In this paper, we give a unified foundation for the construction of homological representations using a functorial approach. Namely, we introduce homological representation functors encoding a large class of homological representations, defined on categories containing all mapping class groups and motion groups in a fixed dimension. These source categories are defined using a topological enrichment of the Quillen bracket construction applied to categories of decorated manifolds. This approach unifies many previously-known constructions, including those of Lawrence–Bigelow, and yields many new representations.

Une source majeure de représentations intéressantes et grandement non-triviales pour les groupes ayant une origine topologique, tels que les groupes de tresses et les groupes de difféotopie, est donnée par leurs actions sur de l’homologie tordue d’espaces associés ; celles-ci sont connues sous le nom de représentations homologiques. Les représentations de ce type se sont montrées particulièrement importantes pour les questions de linéarité, un exemple clef étant celui de la famille de représentations définies topologiquement par Lawrence et Bigelow, et utilisée par Bigelow et Krammer pour démontrer que les groupes de tresses sont linéaires. Dans cet article, nous établissons des fondations unifiées pour la construction de représentations homologiques en utilisant des méthodes fonctorielles. Plus précisément, nous introduisons des foncteurs de représentations homologiques, qui encodent de larges classes de représentations homologiques, et qui sont définis sur des catégories contenant tous les groupes de difféotopie et tous les groupes de mouvement pour une dimension fixée. Ces catégories sources sont définies à partir d’un enrichissement topologique de la construction de support due à Quillen, que l’on applique à des catégories de variétés décorées. Cette approche unifie de nombreuses constructions déjà connues, y compris celles de Lawrence et Bigelow, et produit beaucoup de nouvelles représentations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.204
Classification : 20C12, 20F36, 57K20, 18B40, 20C07, 20J05, 55R80, 57M07, 57M10
Keywords: Homological representations, mapping class groups, surface braid groups, loop braid groups, motion groups, Lawrence–Bigelow representations

Palmer, Martin  1   ; Soulié, Arthur  2

1 Institutul de Matematică Simion Stoilow al Academiei Române, 21 Calea Griviței, 010702 Bucharest (Romania)
2 Normandie Univ., UNICAEN, CNRS, LMNO, 14000 Caen (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__409_0,
     author = {Palmer, Martin and Souli\'e, Arthur},
     title = {Topological representations of motion groups and mapping class groups {\textendash} a unified functorial construction},
     journal = {Annales Henri Lebesgue},
     pages = {409--519},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.204},
     mrnumber = {4799903},
     zbl = {1548.20010},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.204/}
}
TY  - JOUR
AU  - Palmer, Martin
AU  - Soulié, Arthur
TI  - Topological representations of motion groups and mapping class groups – a unified functorial construction
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 409
EP  - 519
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.204/
DO  - 10.5802/ahl.204
LA  - en
ID  - AHL_2024__7__409_0
ER  - 
%0 Journal Article
%A Palmer, Martin
%A Soulié, Arthur
%T Topological representations of motion groups and mapping class groups – a unified functorial construction
%J Annales Henri Lebesgue
%D 2024
%P 409-519
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.204/
%R 10.5802/ahl.204
%G en
%F AHL_2024__7__409_0
Palmer, Martin; Soulié, Arthur. Topological representations of motion groups and mapping class groups – a unified functorial construction. Annales Henri Lebesgue, Tome 7 (2024), pp. 409-519. doi: 10.5802/ahl.204

[AK10] An, Byung Hee; Ko, Ki Hyoung A family of representations of braid groups on surfaces, Pac. J. Math., Volume 247 (2010) no. 2, pp. 257-282 | DOI | MR | Zbl

[BB01] Bigelow, Stephen J.; Budney, Ryan D. The mapping class group of a genus two surface is linear, Algebr. Geom. Topol., Volume 1 (2001), pp. 699-708 | DOI | MR | Zbl

[BB05] Birman, Joan S.; Brendle, Tara E. Braids: a survey, Handbook of knot theory, Elsevier, 2005, pp. 19-103 | DOI | Zbl

[BB23] Basualdo Bonatto, Luciana Decoupling decorations on moduli spaces of manifolds, Math. Proc. Camb. Philos. Soc., Volume 174 (2023) no. 1, pp. 163-198 | DOI | MR | Zbl

[Bel04] Bellingeri, Paolo On presentations of surface braid groups, J. Algebra, Volume 274 (2004) no. 2, pp. 543-563 | Zbl | DOI | MR

[BGG17] Bellingeri, Paolo; Godelle, Eddy; Guaschi, John Abelian and metabelian quotient groups of surface braid groups, Glasg. Math. J., Volume 59 (2017) no. 1, pp. 119-142 | DOI | MR | Zbl

[BHT01] Brendle, Tara E.; Hamidi-Tehrani, Hessam On the linearity problem for mapping class groups, Algebr. Geom. Topol., Volume 1 (2001), pp. 445-468 | DOI | MR | Zbl

[Big01] Bigelow, Stephen J. Braid groups are linear, J. Am. Math. Soc., Volume 14 (2001) no. 2, pp. 471-486 | MR | DOI | Zbl

[Bol12] Boldsen, Søren K. Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z., Volume 270 (2012) no. 1-2, pp. 297-329 | DOI | MR | Zbl

[BPS21] Blanchet, Christian; Palmer, Martin; Shaukat, Awais Heisenberg homology on surface configurations (2021) | arXiv

[Bre97] Bredon, Glen E. Sheaf theory, Graduate Texts in Mathematics, 170, Springer, 1997 | DOI | MR | Zbl

[Bro60] Brown, Morton A proof of the generalized Schoenflies theorem, Bull. Am. Math. Soc., Volume 66 (1960), pp. 74-76 | DOI | MR | Zbl

[Bro62] Brown, Morton Locally flat imbeddings of topological manifolds, Ann. Math., Volume 75 (1962), pp. 331-341 | DOI | MR | Zbl

[BT01] Bödigheimer, Carl-Friedrich; Tillmann, Ulrike Stripping and splitting decorated mapping class groups, Cohomological methods in homotopy theory (Bellaterra, 1998) (Progress in Mathematics), Volume 196, Birkhäuser, 2001, pp. 47-57 | DOI | MR | Zbl

[Bur35] Burau, Werner Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Semin. Univ. Hamb., Volume 11 (1935) no. 1, pp. 179-186 | MR | DOI | Zbl

[But16] Button, Jack O. Mapping class groups are not linear in positive characteristic (2016) | arXiv

[Cer61] Cerf, Jean Topologie de certains espaces de plongements, Bull. Soc. Math. Fr., Volume 89 (1961), pp. 227-380 | DOI | MR | Zbl | Numdam

[Cer68] Cerf, Jean Sur les difféomorphismes de la sphère de dimension trois (Γ 4 =0), Lecture Notes in Mathematics, 53, Springer, 1968 | MR | Zbl

[Dam17] Damiani, Celeste A journey through loop braid groups, Expo. Math., Volume 35 (2017) no. 3, pp. 252-285 | DOI | MR | Zbl

[DK01] Davis, James F.; Kirk, Paul Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35, American Mathematical Society, 2001 | DOI | MR | Zbl

[DPS22] Darné, Jacques; Palmer, Martin; Soulié, Arthur When the lower central series stops: a comprehensive study for braid groups and their relatives (2022) (to appear in the Memoirs of the American Mathematical Society) | arXiv

[DV19] Djament, Aurélien; Vespa, Christine Foncteurs faiblement polynomiaux, Int. Math. Res. Not. (2019) no. 2, pp. 321-391 | DOI | MR | Zbl

[EN02] Erdmann, Karin; Nakano, Daniel K. Representation type of Hecke algebras of type A, Trans. Am. Math. Soc., Volume 354 (2002) no. 1, pp. 275-285 | DOI | MR | Zbl

[Eps66] Epstein, David B. A. Curves on 2-manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 | DOI | MR | Zbl

[FM11] Farb, Benson; Margalit, Dan A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2011 | MR | Zbl | DOI

[FP92] Formanek, Edward; Procesi, Claudio The automorphism group of a free group is not linear, J. Algebra, Volume 149 (1992) no. 2, pp. 494-499 | DOI | MR | Zbl

[Gal21] Galatius, Søren Lecture on invertible field theories, Quantum field theory and manifold invariants (IAS/Park City Mathematics Series), Volume 28, American Mathematical Society, 2021, pp. 347-402 | MR | DOI

[GK95] Getzler, Ezra; Kapranov, Mikhail M. Cyclic operads and cyclic homology, Geometry, topology, & physics for Raoul Bott (Conference Proceedings and Lecture Notes in Geometry and Topology), Volume 4, International Press, 1995, pp. 167-201 | MR | Zbl

[Gra73] Gramain, André Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973) no. 1, pp. 53-66 | MR | DOI | Zbl | Numdam

[Gra76] Grayson, Daniel Higher algebraic K-theory. II (after Daniel Quillen), Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) (Lecture Notes in Mathematics), Volume 551, Springer, 1976, pp. 217-240 | MR | Zbl

[Hat02] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002 | MR | Zbl

[HEO05] Holt, Derek F.; Eick, Bettina; O’Brien, Eamonn A. Handbook of computational group theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2005 | DOI | MR | Zbl

[Hir76] Hirsch, Morris W. Differential topology, Graduate Texts in Mathematics, 33, Springer, 1976 | MR | Zbl | DOI

[HOL02] Häring-Oldenburg, Reinhard; Lambropoulou, Sofia Knot theory in handlebodies, J. Knot Theory Ramifications, Volume 11 (2002) no. 6, pp. 921-943 Knots 2000 Korea, Vol. 3 (Yongpyong) | DOI | MR | Zbl

[Iva93] Ivanov, Nikolai V. On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) (Contemporary Mathematics), Volume 150, American Mathematical Society, 1993, pp. 149-194 | DOI | MR | Zbl

[KLS19] Koberda, Thomas; Luo, Feng; Sun, Hongbin An effective Lie–Kolchin theorem for quasi-unipotent matrices, Linear Algebra Appl., Volume 581 (2019), pp. 304-323 | DOI | MR | Zbl

[Kor02] Korkmaz, Mustafa Low-dimensional homology groups of mapping class groups: a survey, Turk. J. Math., Volume 26 (2002) no. 1, pp. 101-114 | MR | Zbl

[Kra02] Krammer, Daan Braid groups are linear, Ann. Math., Volume 155 (2002) no. 1, pp. 131-156 | DOI | MR | Zbl

[Kra19] Krannich, Manuel Homological stability of topological moduli spaces, Geom. Topol., Volume 23 (2019) no. 5, pp. 2397-2474 | DOI | MR | Zbl

[Law90] Lawrence, R. J. Homological representations of the Hecke algebra, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 141-191 | MR | Zbl | DOI

[Lim63] Lima, Elon L. On the local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 38 (1963), pp. 163-164 | DOI | MR | Zbl

[Mar19] Margalit, Dan Problems, questions, and conjectures about mapping class groups, Breadth in contemporary topology (Proceedings of Symposia in Pure Mathematics), Volume 102, American Mathematical Society, 2019, pp. 157-186 | MR | Zbl | DOI

[Mat69] Mather, John N. Stability of C mappings. II. Infinitesimal stability implies stability, Ann. Math., Volume 89 (1969), pp. 254-291 | DOI | MR | Zbl

[Maz59] Mazur, Barry On embeddings of spheres, Bull. Am. Math. Soc., Volume 65 (1959), pp. 59-65 | DOI | MR | Zbl

[Mil65] Milnor, John Lectures on the h-cobordism theorem, Princeton University Press, 1965 (notes by L. Siebenmann and J. Sondow) | MR | Zbl | DOI

[ML98] Mac Lane, Saunders Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | MR | Zbl

[MMSS01] Mandell, Michael A.; May, Jon P.; Schwede, Stefan; Shipley, Brooke E. Model categories of diagram spectra, Proc. Lond. Math. Soc., Volume 82 (2001) no. 2, pp. 441-512 | DOI | MR | Zbl

[Mor60] Morse, Marston A reduction of the Schoenflies extension problem, Bull. Am. Math. Soc., Volume 66 (1960), pp. 113-115 | DOI | MR | Zbl

[Mor07] Moriyama, Tetsuhiro The mapping class group action on the homology of the configuration spaces of surfaces, J. Lond. Math. Soc., Volume 76 (2007) no. 2, pp. 451-466 | DOI | MR | Zbl

[Pal60a] Palais, Richard S. Extending diffeomorphisms, Proc. Am. Math. Soc., Volume 11 (1960), pp. 274-277 | DOI | MR | Zbl

[Pal60b] Palais, Richard S. Local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 34 (1960), pp. 305-312 | DOI | MR | Zbl

[Pal18] Palmer, Martin Twisted homological stability for configuration spaces, Homology Homotopy Appl., Volume 20 (2018) no. 2, pp. 145-178 | MR | DOI | Zbl

[Pal21] Palmer, Martin Homological stability for moduli spaces of disconnected submanifolds, I, Algebr. Geom. Topol., Volume 21 (2021) no. 3, pp. 1371-1444 | DOI | MR | Zbl

[PS22a] Palmer, Martin; Soulié, Arthur The Burau representations of loop braid groups, C. R. Math., Volume 360 (2022), pp. 781-797 | DOI | MR | Zbl | Numdam

[PS22b] Palmer, Martin; Soulié, Arthur The pro-nilpotent Lawrence–Krammer–Bigelow representation (2022) | arXiv

[PS23] Palmer, Martin; Soulié, Arthur Polynomiality of surface braid and mapping class group representations (2023) | arXiv

[RWW17] Randal-Williams, Oscar; Wahl, Nathalie Homological stability for automorphism groups, Adv. Math., Volume 318 (2017), pp. 534-626 | DOI | MR | Zbl

[Sch06] Schoenflies, Arthur M. Beiträge zur Theorie der Punktmengen. III, Math. Ann., Volume 62 (1906) no. 2, pp. 286-328 | Zbl | DOI | MR

[Sma59] Smale, Stephen Diffeomorphisms of the 2-sphere, Proc. Am. Math. Soc., Volume 10 (1959), pp. 621-626 | DOI | MR | Zbl

[SP] Schommer-Pries, Christopher Skeleton of a braided monoidal category, MathOverflow (URL: https://mathoverflow.net/q/31599)

[Ste51] Steenrod, Norman The Topology of Fibre Bundles, Princeton Mathematical Series, 14, Princeton University Press, 1951 | MR | Zbl | DOI

[Stu06] Stukow, Michał Dehn twists on nonorientable surfaces, Fundam. Math., Volume 189 (2006) no. 2, pp. 117-147 | DOI | MR | Zbl

[Stu10] Stukow, Michał Generating mapping class groups of nonorientable surfaces with boundary, Adv. Geom., Volume 10 (2010) no. 2, pp. 249-273 | DOI | MR | Zbl

[Sup76] Suprunenko, Dmitriĭ A. Matrix groups, Translations of Mathematical Monographs, 45, American Mathematical Society, 1976 (translated from the Russian and edited by K. A. Hirsch) | MR | Zbl | DOI

[Suz05] Suzuki, Masaaki Geometric interpretation of the Magnus representation of the mapping class group, Kobe J. Math., Volume 22 (2005) no. 1-2, pp. 39-47 | MR | Zbl

[The24] The Stacks project authors The Stacks project, 2024 (https://stacks.math.columbia.edu)

[TV08] Toën, Bertrand; Vezzosi, Gabriele Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc., Volume 193 (2008) no. 902 | DOI | MR | Zbl

Cité par Sources :