[Problèmes inverses pour treillis localement perturbés – Hamiltonien discret et graphe quantique]
We consider the inverse scattering problems for two types of Schrödinger operators on locally perturbed periodic lattices. For the discrete Hamiltonian, the knowledge of the S-matrix for all energies determines the graph structure and the coefficients of the Hamiltonian. For locally perturbed equilateral metric graphs, the knowledge of the S-matrix for all energies determines the graph structure.
Nous considérons les problèmes de scattering inverse pour deux types d’opérateurs de Schrödinger sur des réseaux périodiques localement perturbés. Pour le hamiltonien discret, la connaissance de la S-matrice pour toutes les énergies détermine la structure du graphe et les coefficients du hamiltonien. Pour les graphes métriques équilatéraux localement perturbés, la connaissance de la S-matrice pour toutes les énergies détermine la structure du graphe.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.201
Keywords: lattice, metric graph, discrete Hamiltonian, S-matrix, inverse porblem
Blåsten, Emilia  1 ; Exner, Pavel  2 ; Isozaki, Hiroshi  3 ; Lassas, Matti  4 ; Lu, Jinpeng  4
CC-BY 4.0
@article{AHL_2024__7__267_0,
author = {Bl\r{a}sten, Emilia and Exner, Pavel and Isozaki, Hiroshi and Lassas, Matti and Lu, Jinpeng},
title = {Inverse problems for locally perturbed lattices {\textendash} {Discrete} {Hamiltonian} and quantum graph},
journal = {Annales Henri Lebesgue},
pages = {267--305},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.201},
mrnumber = {4799900},
zbl = {7914796},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.201/}
}
TY - JOUR AU - Blåsten, Emilia AU - Exner, Pavel AU - Isozaki, Hiroshi AU - Lassas, Matti AU - Lu, Jinpeng TI - Inverse problems for locally perturbed lattices – Discrete Hamiltonian and quantum graph JO - Annales Henri Lebesgue PY - 2024 SP - 267 EP - 305 VL - 7 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.201/ DO - 10.5802/ahl.201 LA - en ID - AHL_2024__7__267_0 ER -
%0 Journal Article %A Blåsten, Emilia %A Exner, Pavel %A Isozaki, Hiroshi %A Lassas, Matti %A Lu, Jinpeng %T Inverse problems for locally perturbed lattices – Discrete Hamiltonian and quantum graph %J Annales Henri Lebesgue %D 2024 %P 267-305 %V 7 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.201/ %R 10.5802/ahl.201 %G en %F AHL_2024__7__267_0
Blåsten, Emilia; Exner, Pavel; Isozaki, Hiroshi; Lassas, Matti; Lu, Jinpeng. Inverse problems for locally perturbed lattices – Discrete Hamiltonian and quantum graph. Annales Henri Lebesgue, Tome 7 (2024), pp. 267-305. doi: 10.5802/ahl.201
[AIM16] Spectral properties for Schrödinger operators on perturbed lattices, Ann. Henri Poincaré, Volume 17 (2016), pp. 2103-2171 | MR | DOI | Zbl
[AIM18] Inverse scattering for Schrödinger operators on perturbed periodic lattices, Ann. Henri Poincaré, Volume 19 (2018), pp. 3397-3455 | MR | DOI | Zbl
[And13] Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice, Ann. Henri Poincaré, Volume 14 (2013), pp. 347-383 | MR | DOI | Zbl
[BER15] Heat-kernel and resolvent asymptotics for Schrödinger operators on metric graphs, AMRX, Appl. Math. Res. Express, Volume 2015 (2015) no. 1, pp. 129-165 | MR | DOI | Zbl
[BILL23a] Gelfand’s inverse problem for the graph Laplacian, J. Spectr. Theory, Volume 13 (2023) no. 1, pp. 1-45 | MR | Zbl | DOI
[BILL23b] Inverse problems for discrete heat equations and random walks for a class of graphs, SIAM J. Discrete Math., Volume 37 (2023), pp. 831-863 | MR | DOI | Zbl
[BK13] Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, 2013 | MR | Zbl
[Cat97] The spectrum of the continuous Laplacian on a graph, Monatsh. Math., Volume 124 (1997) no. 3, pp. 215-235 | MR | DOI | Zbl
[CET10] Approximation of a general singular vertex coupling in quantum graphs, Ann. Phys., Volume 325 (2010), pp. 548-578 | MR | DOI | Zbl
[Exn96] Weakly coupled states on branching graphs, Lett. Math. Phys., Volume 38 (1996), pp. 313-320 | MR | DOI | Zbl
[Exn97] A duality between Schrödinger operators on graphs and certain Jacobi matrices, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 66 (1997), pp. 359-371 | MR | Zbl | Numdam
[GR22] A Calderéron type inverse problem for the tree graphs, Linear Algebra Appl., Volume 646 (2022), pp. 29-42 | MR | DOI | Zbl
[IK12] Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré, Volume 13 (2012), pp. 751-788 | MR | DOI | Zbl
[IM15] Inverse scattering at a fixed energy for discrete Schrödinger operators on the square lattice, Ann. Inst. Fourier, Volume 65 (2015), pp. 1153-1200 | MR | DOI | Zbl | Numdam
[IN95] Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Am. Math. Soc., Volume 347 (1995), pp. 3375-3390 | MR | DOI | Zbl
[KKL01] Inverse boundary spectral problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall / CRC Press, 2001 | MR | Zbl | DOI
[KKLM04] Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Probl., Volume 20 (2004), pp. 419-436 | MR | DOI | Zbl
[KS99] Kirchhoff’s rule for quantum wires, J. Phys. A. Math. Gen., Volume 32 (1999), pp. 595-630 | MR | DOI | Zbl
[Pan06] Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys., Volume 77 (2006), pp. 139-154 | MR | DOI | Zbl
[Pan13] An example of unitary equivalence between self-adjoint extensions and their parameters, J. Funct. Anal., Volume 265 (2013), pp. 2910-2936 | MR | DOI | Zbl
Cité par Sources :





