[Sommes de Brikhoff ne satisfaisant pas de théorème limite distributionnel temporel pour presque tout irrationnel]
Dolgopyat and Sarig showed that for any piecewise smooth function and almost every pair , fails to fulfill a temporal distributional limit theorem. In this article, we show that the doubly metric statement can be sharpened to a single metric one: For almost every and all , does not satisfy a temporal distributional limit theorem, regardless of centering and scaling. The obtained results additionally lead to progress in a question posed by Dolgopyat and Sarig.
Dolgopyat et Sarig ont montré que pour toute fonction lisse par morceaux et presque tout couple , alors ne peut satisfaire un théorème limite distributionnel temporel. Dans cet article, nous montrons que l’énoncé sur le produit peut être raffiné en un énoncé sur une seule composante : pour presque tout et pour tout , ne satisfait pas de théorème limite distributionnel temporel, quels que soient le centrage et la mise à l’échelle. Les résultats obtenus permettent en outre de progresser sur une question posée par Dolgopyat et Sarig.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.200
Keywords: Irrational circle rotation, metric Diophantine approximation, temporal limit theorems, ergodic sums
Frühwirth, Lorenz  1 ; Hauke, Manuel  2
CC-BY 4.0
@article{AHL_2024__7__251_0,
author = {Fr\"uhwirth, Lorenz and Hauke, Manuel},
title = {On {Birkhoff} sums that satisfy no temporal distributional limit theorem for almost every irrational},
journal = {Annales Henri Lebesgue},
pages = {251--265},
year = {2024},
publisher = {\'ENS Rennes},
volume = {7},
doi = {10.5802/ahl.200},
mrnumber = {4765358},
zbl = {07893730},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.200/}
}
TY - JOUR AU - Frühwirth, Lorenz AU - Hauke, Manuel TI - On Birkhoff sums that satisfy no temporal distributional limit theorem for almost every irrational JO - Annales Henri Lebesgue PY - 2024 SP - 251 EP - 265 VL - 7 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.200/ DO - 10.5802/ahl.200 LA - en ID - AHL_2024__7__251_0 ER -
%0 Journal Article %A Frühwirth, Lorenz %A Hauke, Manuel %T On Birkhoff sums that satisfy no temporal distributional limit theorem for almost every irrational %J Annales Henri Lebesgue %D 2024 %P 251-265 %V 7 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.200/ %R 10.5802/ahl.200 %G en %F AHL_2024__7__251_0
Frühwirth, Lorenz; Hauke, Manuel. On Birkhoff sums that satisfy no temporal distributional limit theorem for almost every irrational. Annales Henri Lebesgue, Tome 7 (2024), pp. 251-265. doi: 10.5802/ahl.200
[ADDS15] The visits to zero of a random walk driven by an irrational rotation, Isr. J. Math., Volume 207 (2015), pp. 653-717 | MR | Zbl | DOI
[AK82] The visits to zero of some deterministic random walks, Proc. Lond. Math. Soc., Volume 44 (1982), pp. 535-553 | MR | DOI | Zbl
[AS03] Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, 2003 | MR | DOI | Zbl
[Bec10] Randomness of the square root of 2 and the giant leap. I, Period. Math. Hung., Volume 60 (2010) no. 2, pp. 137-242 | MR | DOI | Zbl
[Bec11] Randomness of the square root of 2 and the giant leap. II, Period. Math. Hung., Volume 62 (2011) no. 2, pp. 127-246 | MR | DOI | Zbl
[Bec14] Probabilistic Diophantine approximation. Randomness in lattice point counting, Springer Monographs in Mathematics, Springer, 2014 | MR | DOI | Zbl
[Bil95] Probability and measure, John Wiley & Sons, 1995 | MR | Zbl
[Bor23] On the distribution of Sudler products and Birkhoff sums for the irrational rotation (2023) to appear in Annales de l’Institut Fourier (Grenoble) | arXiv
[BU18] A temporal central limit theorem for real-valued cocycles over rotations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 4, pp. 2304-2334 | MR | DOI | Zbl
[Cas50] Some metrical theorems in Diophantine approximation I, Math. Proc. Camb. Philos. Soc., Volume 46 (1950), pp. 209-218 | DOI | MR | Zbl
[DF15] Limit theorems for toral translations, Volume 89 (2015), pp. 227-277 | DOI | Zbl
[DS41] Khintchine’s problem in metric Diophantine approximation, Duke Math. J., Volume 8 (1941), pp. 243-255 | MR | DOI | Zbl
[DS17] Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., Volume 166 (2017), pp. 680-713 | MR | DOI | Zbl
[DS18] No temporal distributional limit theorem for a.e. irrational translation, Ann. Henri Lebesgue, Volume 1 (2018), pp. 127-148 | MR | Numdam | DOI | Zbl
[DS20] Quenched and annealed temporal limit theorems for circle rotations, Some aspects of the theory of dynamical systems: a tribute to Jean-Christophe Yoccoz (Astérisque), Volume 415, Société Mathématique de France, 2020, pp. 59-85 | DOI | Zbl
[DV86] Estimates for partial sums of continued fraction partial quotients, Pac. J. Math., Volume 122 (1986), pp. 73-82 | MR | DOI | Zbl
[FH23] On the metric upper density of Birkhoff sums for irrational rotations, Nonlinearity, Volume 36 (2023), pp. 7065-7104 | MR | Zbl | DOI
[Her79] Sur la Conjugaison Différentiable des Difféomorphismes du Cercle à des Rotations, Publ. Math., Inst. Hautes Étud. Sci., Volume 49 (1979), pp. 5-233 | MR | Numdam | DOI | Zbl
[Kes60] Uniform distribution mod 1, Ann. Math., Volume 71 (1960), pp. 445-471 | DOI | Zbl
[KN74] Uniform Distribution of Sequences, Pure and Applied Mathematics, John Wiley & Sons, 1974 | MR | Zbl
[RS92] Continued fractions, World Scientific, 1992 | DOI | MR | Zbl
[Sch78] A cylinder flow arising from irregularity of distribution, Compos. Math., Volume 36 (1978), pp. 225-232 | MR | Numdam | Zbl
Cité par Sources :





