A Zero Lyapunov Exponent in Genus 3 Implies the Eierlegende Wollmilchsau
[En genre 3, seul l’Eierlegende Wollmilchsau a un exposant de Lyapunov nul]
Annales Henri Lebesgue, Tome 7 (2024), pp. 207-237

We prove that the closed orbit of the Eierlegende Wollmilchsau is the only SL 2 ()-orbit closure in genus three with a zero Lyapunov exponent in its Kontsevich–Zorich spectrum. The result recovers previous partial results in this direction by Bainbridge–Habegger–Möller and the first named author. The main new contribution is the identification of the differentials in the Hodge bundle corresponding to the Forni subspace in terms of the degenerations of the surface. We use this description of the differentials in the Forni subspace to evaluate them on absolute homology curves and apply the jump problem from the work of Hu and the third named author to the differentials near the boundary of the orbit closure. This results in a simple geometric criterion that excludes the existence of a Forni subspace.

Nous démontrons que l’adhérence de l’orbite du Eierelegende Wollmilchsau est la seule adhérence d’orbite de SL 2 () en genre trois avec un exposant de Lyapunov nul dans son spectre de Kontsevich-Zorich. Ce résultat étend des résultats partiels de Bainbridge–Habegger–Möller et du premier auteur. La contribution principale de notre article est l’identification des différentielles dans le fibré de Hodge correspondant au sous-espace de Forni en termes de dégénérescences de la surface. Nous utilisons cette description des différentielles dans le sous-espace de Forni afin de les évaluer sur les courbes d’homologie absolue et appliquons le “jump problem”, dû à Hu et au troisième auteur, aux différentielles près du bord de l’adhérence de l’orbite. Ceci implique un critère géométrique simple qui exclut l’existence d’un sous-espace de Forni.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.198
Classification : 32G20, 37D40, 14H15, 14G35, 37D25
Keywords: Teichmüller geodesic flow, Kontsevich-Zorich cocycle, Abelian differentials, translation surfaces, Lyapunov exponents, period matrices, variational formulas

Aulicino, David  1   ; Benirschke, Frederik  2   ; Norton, Chaya 

1 Department of Mathematics, Room 1156, Ingersoll Hall, 2900 Bedford Avenue, Brooklyn, NY 11210-2889 (USA) Department of Mathematics, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016 (USA)
2 Eckhart Hall 327, 5734 S University Ave, Chicago, IL 60637 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2024__7__207_0,
     author = {Aulicino, David and Benirschke, Frederik and Norton, Chaya},
     title = {A {Zero} {Lyapunov} {Exponent} in {Genus} $3$ {Implies} the {Eierlegende} {Wollmilchsau}},
     journal = {Annales Henri Lebesgue},
     pages = {207--237},
     year = {2024},
     publisher = {\'ENS Rennes},
     volume = {7},
     doi = {10.5802/ahl.198},
     mrnumber = {4765356},
     zbl = {1544.32025},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.198/}
}
TY  - JOUR
AU  - Aulicino, David
AU  - Benirschke, Frederik
AU  - Norton, Chaya
TI  - A Zero Lyapunov Exponent in Genus $3$ Implies the Eierlegende Wollmilchsau
JO  - Annales Henri Lebesgue
PY  - 2024
SP  - 207
EP  - 237
VL  - 7
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.198/
DO  - 10.5802/ahl.198
LA  - en
ID  - AHL_2024__7__207_0
ER  - 
%0 Journal Article
%A Aulicino, David
%A Benirschke, Frederik
%A Norton, Chaya
%T A Zero Lyapunov Exponent in Genus $3$ Implies the Eierlegende Wollmilchsau
%J Annales Henri Lebesgue
%D 2024
%P 207-237
%V 7
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.198/
%R 10.5802/ahl.198
%G en
%F AHL_2024__7__207_0
Aulicino, David; Benirschke, Frederik; Norton, Chaya. A Zero Lyapunov Exponent in Genus $3$ Implies the Eierlegende Wollmilchsau. Annales Henri Lebesgue, Tome 7 (2024), pp. 207-237. doi: 10.5802/ahl.198

[AEM17] Avila, Artur; Eskin, Alex; Möller, Martin Symplectic and isometric SL (2,)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math., Volume 732 (2017), pp. 1-20 | DOI | MR | Zbl

[AN20] Aulicino, David; Norton, Chaya Shimura–Teichmüller curves in genus 5, J. Mod. Dyn., Volume 16 (2020), pp. 255-288 | DOI | MR | Zbl

[Aul15a] Aulicino, David Affine Manifolds and Zero Lyapunov Exponents in Genus 3, Geom. Funct. Anal., Volume 25 (2015) no. 5, pp. 1333-1370 | DOI | MR | Zbl

[Aul15b] Aulicino, David Teichmüller discs with completely degenerate Kontsevich–Zorich spectrum, Comment. Math. Helv., Volume 90 (2015) no. 3, pp. 573-643 | DOI | MR | Zbl

[Aul18] Aulicino, David Affine invariant submanifolds with completely degenerate Kontsevich–Zorich spectrum, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 1, pp. 10-33 | DOI | MR | Zbl

[AV07] Avila, Artur; Viana, Marcelo Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture, Acta Math., Volume 198 (2007) no. 1, pp. 1-56 | DOI | MR | Zbl

[Bai07] Bainbridge, Matt Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | DOI | MR | Zbl

[BHM16] Bainbridge, Matt; Habegger, Philipp; Möller, Martin Teichmüller curves in genus three and just likely intersections in G m n ×G a n , Publ. Math., Inst. Hautes Étud. Sci., Volume 124 (2016), pp. 1-98 | Numdam | MR | DOI | Zbl

[EM18] Eskin, Alex; Mirzakhani, Maryam Invariant and stationary measures for the SL (2,) action on moduli space, Publ. Math., Inst. Hautes Étud. Sci., Volume 127 (2018), pp. 95-324 | MR | Zbl | DOI

[EMM15] Eskin, Alex; Mirzakhani, Maryam; Mohammadi, Amir Isolation, equidistribution, and orbit closures for the SL (2,) action on moduli space, Ann. Math., Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl

[Fay73] Fay, John D. Theta functions on Riemann surfaces, Lecture Notes in Mathematics, 352, Springer, 1973 | MR | Zbl

[Fil16] Filip, Simion Splitting mixed Hodge structures over affine invariant manifolds, Ann. Math., Volume 183 (2016) no. 2, pp. 681-713 | DOI | MR | Zbl

[Fil17] Filip, Simion Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Math. J., Volume 166 (2017) no. 4, pp. 657-706 | DOI | MR | Zbl

[FM14] Forni, Giovanni; Matheus, Carlos Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., Volume 8 (2014) no. 3-4, pp. 271-436 | MR | DOI | Zbl

[FMZ14] Forni, Giovanni; Matheus, Carlos; Zorich, Anton Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 2, pp. 353-408 | DOI | Zbl | MR

[For02] Forni, Giovanni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math., Volume 155 (2002) no. 1, pp. 1-103 | DOI | MR | Zbl

[For06] Forni, Giovanni On the Lyapunov exponents of the Kontsevich–Zorich cocycle, Handbook of dynamical systems. Vol. 1B, 2006, pp. 549-580 | MR | Zbl

[For11] Forni, Giovanni A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle, J. Mod. Dyn., Volume 5 (2011) no. 2, pp. 355-395 (With an appendix by Carlos Matheus) | DOI | MR | Zbl

[HN20] Hu, Xuntao; Norton, Chaya General variational formulas for Abelian differentials, Int. Math. Res. Not. (2020) no. 12, pp. 3540-3581 | DOI | MR | Zbl

[HS08] Herrlich, Frank; Schmithüsen, Gabriela An extraordinary origami curve, Math. Nachr., Volume 281 (2008) no. 2, pp. 219-237 | Zbl | DOI | MR

[KZ03] Kontsevich, Maxim; Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | DOI | MR | Zbl

[Mas82] Masur, Howard Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982) no. 1, pp. 169-200 | DOI | MR | Zbl

[Möl11] Möller, Martin Shimura and Teichmüller curves, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 1-32 | Zbl | DOI | MR

[Vee82] Veech, William A. Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982) no. 1, pp. 201-242 | Zbl | DOI | MR

[Vee89] Veech, William A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl

[Wri14] Wright, Alex The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol., Volume 18 (2014) no. 3, pp. 1323-1341 | DOI | MR | Zbl

[Wri15] Wright, Alex Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., Volume 19 (2015) no. 1, pp. 413-438 | DOI | MR | Zbl

[Yam80] Yamada, Akira Precise variational formulas for abelian differentials, Kodai Math. J., Volume 3 (1980) no. 1, pp. 114-143 | MR | Zbl

[Zor06] Zorich, Anton Flat surfaces, Frontiers in number theory, physics, and geometry. I On random matrices, zeta functions, and dynamical systems, Springer, 2006, pp. 437-583 | DOI | MR | Zbl

Cité par Sources :