[Propriétés de contrôlabilité à zéro de l’équation de Baouendi–Grushin généralisée bidimensionnelle avec domaines de contrôle non rectangulaires]
We consider the null-controllability problem for the generalized Baouendi–Grushin equation on a rectangular domain. Sharp controllability results already exist when the control domain is a vertical strip, or when . In this article, we provide upper and lower bounds for the minimal time of null-controllability for general and non-rectangular control region . In some geometries for , the upper bound and the lower bound are equal, in which case, we know the exact value of the minimal time of null-controllability.
Our proof relies on several tools: known results when is a vertical strip and cutoff arguments for the upper bound of the minimal time of null-controllability; spectral analysis of the Schrödinger operator when , pseudo-differential-type operators on polynomials and Runge’s theorem for the lower bound.
Nous considérons le problème de la contrôlabilité à zéro de l’équation de Baouendi–Grushin généralisée sur un domaine rectangulaire. On connaît déjà des résultats précis de contrôlabilité lorsque le domaine de contrôle est une bande verticale, ou lorsque . Dans cet article, nous démontrons des bornes supérieures et inférieures du temps minimal de contrôlabilité à zéro, pour une classe générale de potentiels et de domaines de contrôle possiblement non rectangulaires. Pour certaines zones de contrôle, la borne supérieure et la borne inférieure coïncident, auquel cas nous connaissons la valeur exacte du temps minimal de contrôlabilité à zéro.
Notre démonstration s’appuie sur plusieurs outils. Pour la borne supérieure du temps minimal de contrôlabilité, nous utilisons des résultats connus lorsque est une bande verticale et des arguments de troncature. Pour la borne inférieure, nous utilisons une analyse spectrale de l’opérateur de Schrödinger lorsque , des opérateurs de type pseudo-différentiel sur les polynômes et le théorème de Runge.
Révisé le :
Accepté le :
Publié le :
Keywords: null-controllability, observability, degenerate parabolic equations, resolvant estimates
Dardé, Jérémi 1 ; Koenig, Armand 1 ; Royer, Julien 1
CC-BY 4.0
@article{AHL_2023__6__1479_0,
author = {Dard\'e, J\'er\'emi and Koenig, Armand and Royer, Julien},
title = {Null-controllability properties of the generalized two-dimensional {Baouendi{\textendash}Grushin} equation with non-rectangular control sets},
journal = {Annales Henri Lebesgue},
pages = {1479--1522},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.193},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.193/}
}
TY - JOUR AU - Dardé, Jérémi AU - Koenig, Armand AU - Royer, Julien TI - Null-controllability properties of the generalized two-dimensional Baouendi–Grushin equation with non-rectangular control sets JO - Annales Henri Lebesgue PY - 2023 SP - 1479 EP - 1522 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.193/ DO - 10.5802/ahl.193 LA - en ID - AHL_2023__6__1479_0 ER -
%0 Journal Article %A Dardé, Jérémi %A Koenig, Armand %A Royer, Julien %T Null-controllability properties of the generalized two-dimensional Baouendi–Grushin equation with non-rectangular control sets %J Annales Henri Lebesgue %D 2023 %P 1479-1522 %V 6 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.193/ %R 10.5802/ahl.193 %G en %F AHL_2023__6__1479_0
Dardé, Jérémi; Koenig, Armand; Royer, Julien. Null-controllability properties of the generalized two-dimensional Baouendi–Grushin equation with non-rectangular control sets. Annales Henri Lebesgue, Tome 6 (2023), pp. 1479-1522. doi: 10.5802/ahl.193
[ABM21] Analysis of the Null Controllability of Degenerate Parabolic Systems of Grushin Type via the Moments Method, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 4799-4843 | DOI | Zbl | MR
[AKBGBT16] New Phenomena for the Null Controllability of Parabolic Systems: Minimal Time and Geometrical Dependence, J. Math. Anal. Appl., Volume 444 (2016) no. 2, pp. 1071-1113 | DOI | Zbl | MR
[BBM20] A Block Moment Method to Handle Spectral Condensation Phenomenon in Parabolic Control Problems, Ann. Henri Lebesgue, Volume 3 (2020), pp. 717-793 | DOI | Zbl | MR | Numdam
[BC17] Heat Equation on the Heisenberg Group: Observability and Applications, J. Differ. Equations, Volume 262 (2017) no. 8, pp. 4475-4521 | DOI | Zbl | MR
[BCG14] Null Controllability of Grushin-type Operators in Dimension Two, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 67-101 | DOI | Zbl | MR
[BDE20] Minimal Time Issues for the Observability of Grushin-type Equations, Ann. Inst. Fourier, Volume 70 (2020) no. 1, pp. 247-312 | DOI | Zbl | MR | Numdam
[Bea14] Null Controllability of Kolmogorov-type Equations, Math. Control Signals Syst., Volume 26 (2014) no. 1, pp. 145-176 | DOI | Zbl | MR
[BHHR15] Degenerate Parabolic Operators of Kolmogorov Type with a Geometric Control Condition, ESAIM, Control Optim. Calc. Var., Volume 21 (2015) no. 2, pp. 487-512 | DOI | Zbl | MR | Numdam
[BLR92] Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | MR | Zbl
[BMM15] 2d Grushin-type Equations: Minimal Time and Null Controllable Data, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 5813-5845 | DOI | Zbl | MR
[Bre11] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011 | DOI | MR | Zbl
[BS22] Time Optimal Observability for Grushin Schrödinger Equation, Anal. PDE, Volume 15 (2022) no. 6, pp. 1487-1530 | DOI | Zbl
[BZ09] Some Controllability Results for the 2D Kolmogorov Equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 5, pp. 1793-1815 | DOI | Zbl | MR | Numdam
[CMV16] Global Carleman Estimates for Degenerate Parabolic Operators with Applications, Memoirs of the American Mathematical Society, 239, American Mathematical Society, 2016 no. 1133 | DOI | MR | Zbl
[Cor07] Control and Nonlinearity, Mathematical Surveys and Monographs, 143, American Mathematical Society, 2007 | MR | Zbl
[Dav07] Linear Operators and Their Spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, 2007 | Zbl | DOI
[DK20] Control of the Grushin Equation: Non-Rectangular Control Region and Minimal Time, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 3 | DOI | MR | Zbl
[Dol73] Observability for the One-Dimensional Heat Equation, Stud. Math., Volume 48 (1973), pp. 291-305 | DOI | MR | Zbl
[DR21] Critical Time for the Observability of Kolmogorov-type Equations, J. Éc. Polytech., Math., Volume 8 (2021), pp. 859-894 | DOI | Zbl | MR | Numdam
[DS99] Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, Cambridge University Press, 1999 no. 268 | DOI | MR | Zbl
[FKL21] Observability and Controllability for the Schrödinger Equation on Quotients of Groups of Heisenberg Type, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1459-1513 | DOI | Zbl | Numdam
[FR71] Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension, Arch. Ration. Mech. Anal., Volume 43 (1971) no. 4, pp. 272-292 | DOI | Zbl | MR
[Hat02] Algebraic Topology, Cambridge University Press, 2002 | Zbl
[Hel13] Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, 2013 | MR | Zbl | DOI
[HSS05] Semiclassical Analysis for the Kramers–Fokker–Planck Equation, Commun. Partial Differ. Equations, Volume 30 (2005) no. 5-6, pp. 689-760 | DOI | Zbl | MR
[Kat95] Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, 1995 no. 132 | DOI | Zbl
[Koe17] Non-Null-Controllability of the Grushin Operator in 2D, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 12, pp. 1215-1235 | DOI | Zbl | MR | Numdam
[Koe20] Lack of Null-Controllability for the Fractional Heat Equation and Related Equations, SIAM J. Control Optim., Volume 58 (2020) no. 6, pp. 3130-3160 | Zbl | DOI | MR
[KSTV15] Pseudospectra in Non-Hermitian Quantum Mechanics, J. Math. Phys., Volume 56 (2015), 103513 | DOI | Zbl | MR
[Let23] Subelliptic Wave Equations Are Never Observable, Anal. PDE, Volume 16 (2023) no. 3, pp. 643-678 | DOI | Zbl | MR
[LL22] Tunneling Estimates and Approximate Controllability for Hypoelliptic Equations, Memoirs of the American Mathematical Society, 276, American Mathematical Society, 2022 | Zbl | DOI
[LL23] On uniform controllability of 1D transport equations in the vanishing viscosity limit, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 265-312 | DOI | Zbl | MR
[LS23] Observability of Baouendi–Grushin-type Equations through Resolvent Estimates, J. Inst. Math. Jussieu, Volume 22 (2023) no. 2, pp. 541-579 | DOI | Zbl | MR
[Rud86] Real and Complex Analysis, McGraw Hill Education, 1986 | Zbl
[Rud91] Functional Analysis, McGraw-Hill, 1991 | Zbl
[Yeg63] Some problems in the theory of optimal control, Zh. Vychisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 887-904 | MR | Zbl
Cité par Sources :





