Connectivity of the Gromov Boundary of the Free Factor Complex
[Connexité de bord de Gromov du complexe des facteurs libres]
Annales Henri Lebesgue, Tome 6 (2023), pp. 1291-1348

We show that in large enough rank, the Gromov boundary of the free factor complex is path connected and locally path connected.

Nous montrons que, en rang suffisamment grand, le bord de Gromov du complexe des facteurs libres est connexe par arcs et localement connexe par arcs.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.189
Classification : 20F65, 20F28
Keywords: free factor complex, Gromov boundary, path-connectivity

Bestvina, Mladen 1 ; Chaika, Jon 2 ; Hensel, Sebastian 3

1 University of Utah Department of Mathematics 155 South 1400 East, JWB 233 Salt Lake City, Utah 84112-0090, USA
2 University of Utah Department of Mathematics, 203 155 South 1400 East, RM 233 Salt Lake City, Utah, 84112-0090, USA
3 Mathematisches Institut der Universität München Theresienstr. 39 D-80333 München, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__1291_0,
     author = {Bestvina, Mladen and Chaika, Jon and Hensel, Sebastian},
     title = {Connectivity of the {Gromov} {Boundary} of the {Free} {Factor} {Complex}},
     journal = {Annales Henri Lebesgue},
     pages = {1291--1348},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.189},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.189/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Chaika, Jon
AU  - Hensel, Sebastian
TI  - Connectivity of the Gromov Boundary of the Free Factor Complex
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 1291
EP  - 1348
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.189/
DO  - 10.5802/ahl.189
LA  - en
ID  - AHL_2023__6__1291_0
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Chaika, Jon
%A Hensel, Sebastian
%T Connectivity of the Gromov Boundary of the Free Factor Complex
%J Annales Henri Lebesgue
%D 2023
%P 1291-1348
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.189/
%R 10.5802/ahl.189
%G en
%F AHL_2023__6__1291_0
Bestvina, Mladen; Chaika, Jon; Hensel, Sebastian. Connectivity of the Gromov Boundary of the Free Factor Complex. Annales Henri Lebesgue, Tome 6 (2023), pp. 1291-1348. doi: 10.5802/ahl.189

[BF] Bestvina, Mladen; Feighn, Mark Outer limits (available at https://www.math.utah.edu/~bestvina/eprints/bestvina.feighn..outer_limits.pdf)

[BF14] Bestvina, Mladen; Feighn, Mark Hyperbolicity of the complex of free factors, Adv. Math., Volume 256 (2014), pp. 104-155 | DOI | MR | Zbl

[BR15] Bestvina, Mladen; Reynolds, Patrick The boundary of the complex of free factors, Duke Math. J., Volume 164 (2015) no. 11, pp. 2213-2251 | DOI | MR | Zbl

[CH] Chaika, Jon; Hensel, Sebastian Path-connectivity of the set of uniquely ergodic and cobounded foliations (available on the authors homepage)

[CHL07] Coulbois, Thierry; Hilion, Arnaud; Lustig, Martin Non-unique ergodicity, observers’ topology and the dual algebraic lamination for -trees, Ill. J. Math., Volume 51 (2007) no. 3, pp. 897-911 | MR | Zbl

[CHL08a] Coulbois, Thierry; Hilion, Arnaud; Lustig, Martin -trees and laminations for free groups. I. Algebraic laminations, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 723-736 | DOI | MR | Zbl

[CHL08b] Coulbois, Thierry; Hilion, Arnaud; Lustig, Martin -trees and laminations for free groups. II. The dual lamination of an -tree, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 737-754 | DOI | MR | Zbl

[CHL08c] Coulbois, Thierry; Hilion, Arnaud; Lustig, Martin -trees and laminations for free groups. III.Currents and dual -tree metrics, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 755-766 | DOI | MR | Zbl

[CV86] Culler, Marc; Vogtmann, Karen Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986), pp. 91-119 | Zbl | DOI | MR

[FLP12] Fathi, Albert; Laudenbach, François; Poénaru, Valentin Thurston’s work on surfaces, Mathematical Notes (Princeton), 48, Princeton University Press, 2012 (translated from the 1979 French original by Djun M. Kim and Dan Margalit) | MR | Zbl | DOI

[Gab09] Gabai, David Almost filling laminations and the connectivity of ending lamination space, Geom. Topol., Volume 13 (2009) no. 2, pp. 1017-1041 | DOI | MR | Zbl

[Gab14] Gabai, David On the topology of ending lamination space, Geom. Topol., Volume 18 (2014) no. 5, pp. 2683-2745 | DOI | MR | Zbl

[Gui00a] Guirardel, Vincent Dynamics of Out (F n ) on the boundary of outer space, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 4, pp. 433-465 | Numdam | DOI | MR | Zbl

[Gui00b] Guirardel, Vincent Dynamics of Out(F n ) on the boundary of outer space, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 4, pp. 433-465 | MR | Numdam | Zbl | DOI

[Ham14] Hamenstädt, Ursula The boundary of the free factor graph and the free splitting graph (2014) | arXiv

[Hor17] Horbez, Camille The boundary of the outer space of a free product, Isr. J. Math., Volume 221 (2017) no. 1, pp. 179-234 | Zbl | DOI | MR

[HP11] Hensel, Sebastian; Przytycki, Piotr The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc., Volume 84 (2011) no. 1, pp. 103-119 | DOI | MR | Zbl

[Kap06] Kapovich, Ilya Currents on free groups, Topological and asymptotic aspects of group theory (Contemporary Mathematics), Volume 394, American Mathematical Society, 2006, pp. 149-176 | MR | Zbl | DOI

[KL09] Kapovich, Ilya; Lustig, Martin Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol., Volume 13 (2009) no. 3, pp. 1805-1833 | DOI | Zbl | MR

[KL10] Kapovich, Ilya; Lustig, Martin Intersection form, laminations and currents on free groups, Geom. Funct. Anal., Volume 19 (2010) no. 5, pp. 1426-1467 | DOI | MR | Zbl

[Kla18] Klarreich, Erica The Boundary at Infinity of the Curve Complex and the Relative Teichmüller Space (2018) (to appear in Groups, Geometry, and Dynamics) | arXiv

[KR14] Kapovich, Ilya; Rafi, Kasra On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 391-414 | Zbl | DOI | MR

[LL03] Levitt, Gilbert; Lustig, Martin Irreducible automorphisms of F n have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 59-72 | DOI | MR | Zbl

[LS09] Leininger, Christopher J.; Schleimer, Saul Connectivity of the space of ending laminations, Duke Math. J., Volume 150 (2009) no. 3, pp. 533-575 | DOI | MR | Zbl

[Mar95] Martin, Reiner Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, Ph. D. Thesis, University of California, Los Angeles, USA (1995), 87 pages | MR

[MM99] Masur, Howard A.; Minsky, Yair N. Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999) no. 1, pp. 103-149 | DOI | MR | Zbl

[Nie24] Nielsen, Jakob Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR | Zbl

[Rey12] Reynolds, Patrick Reducing systems for very small trees (2012) | arXiv

[Ser80] Serre, Jean-Pierre Trees, Springer, 1980 (translated from the French by John Stillwell) | MR | Zbl | DOI

[Sko96] Skora, Richard K. Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | DOI | MR | Zbl

[Sta83] Stallings, John R. Topology of finite graphs, Invent. Math., Volume 71 (1983) no. 3, pp. 551-565 | DOI | MR | Zbl

[Vog08] Vogtmann, Karen What isouter space?, Notices Am. Math. Soc., Volume 55 (2008) no. 7, pp. 784-786 | MR | Zbl

[Whi36] Whitehead, J. H. C. On equivalent sets of elements in a free group, Ann. Math., Volume 37 (1936) no. 4, pp. 782-800 | DOI | MR | Zbl

Cité par Sources :