[Connexité de bord de Gromov du complexe des facteurs libres]
We show that in large enough rank, the Gromov boundary of the free factor complex is path connected and locally path connected.
Nous montrons que, en rang suffisamment grand, le bord de Gromov du complexe des facteurs libres est connexe par arcs et localement connexe par arcs.
Révisé le :
Accepté le :
Publié le :
Keywords: free factor complex, Gromov boundary, path-connectivity
Bestvina, Mladen 1 ; Chaika, Jon 2 ; Hensel, Sebastian 3
CC-BY 4.0
@article{AHL_2023__6__1291_0,
author = {Bestvina, Mladen and Chaika, Jon and Hensel, Sebastian},
title = {Connectivity of the {Gromov} {Boundary} of the {Free} {Factor} {Complex}},
journal = {Annales Henri Lebesgue},
pages = {1291--1348},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.189},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.189/}
}
TY - JOUR AU - Bestvina, Mladen AU - Chaika, Jon AU - Hensel, Sebastian TI - Connectivity of the Gromov Boundary of the Free Factor Complex JO - Annales Henri Lebesgue PY - 2023 SP - 1291 EP - 1348 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.189/ DO - 10.5802/ahl.189 LA - en ID - AHL_2023__6__1291_0 ER -
%0 Journal Article %A Bestvina, Mladen %A Chaika, Jon %A Hensel, Sebastian %T Connectivity of the Gromov Boundary of the Free Factor Complex %J Annales Henri Lebesgue %D 2023 %P 1291-1348 %V 6 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.189/ %R 10.5802/ahl.189 %G en %F AHL_2023__6__1291_0
Bestvina, Mladen; Chaika, Jon; Hensel, Sebastian. Connectivity of the Gromov Boundary of the Free Factor Complex. Annales Henri Lebesgue, Tome 6 (2023), pp. 1291-1348. doi: 10.5802/ahl.189
[BF] Outer limits (available at https://www.math.utah.edu/~bestvina/eprints/bestvina.feighn..outer_limits.pdf)
[BF14] Hyperbolicity of the complex of free factors, Adv. Math., Volume 256 (2014), pp. 104-155 | DOI | MR | Zbl
[BR15] The boundary of the complex of free factors, Duke Math. J., Volume 164 (2015) no. 11, pp. 2213-2251 | DOI | MR | Zbl
[CH] Path-connectivity of the set of uniquely ergodic and cobounded foliations (available on the authors homepage)
[CHL07] Non-unique ergodicity, observers’ topology and the dual algebraic lamination for -trees, Ill. J. Math., Volume 51 (2007) no. 3, pp. 897-911 | MR | Zbl
[CHL08a] -trees and laminations for free groups. I. Algebraic laminations, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 723-736 | DOI | MR | Zbl
[CHL08b] -trees and laminations for free groups. II. The dual lamination of an -tree, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 737-754 | DOI | MR | Zbl
[CHL08c] -trees and laminations for free groups. III.Currents and dual -tree metrics, J. Lond. Math. Soc., Volume 78 (2008) no. 3, pp. 755-766 | DOI | MR | Zbl
[CV86] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986), pp. 91-119 | Zbl | DOI | MR
[FLP12] Thurston’s work on surfaces, Mathematical Notes (Princeton), 48, Princeton University Press, 2012 (translated from the 1979 French original by Djun M. Kim and Dan Margalit) | MR | Zbl | DOI
[Gab09] Almost filling laminations and the connectivity of ending lamination space, Geom. Topol., Volume 13 (2009) no. 2, pp. 1017-1041 | DOI | MR | Zbl
[Gab14] On the topology of ending lamination space, Geom. Topol., Volume 18 (2014) no. 5, pp. 2683-2745 | DOI | MR | Zbl
[Gui00a] Dynamics of on the boundary of outer space, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 4, pp. 433-465 | Numdam | DOI | MR | Zbl
[Gui00b] Dynamics of on the boundary of outer space, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 4, pp. 433-465 | MR | Numdam | Zbl | DOI
[Ham14] The boundary of the free factor graph and the free splitting graph (2014) | arXiv
[Hor17] The boundary of the outer space of a free product, Isr. J. Math., Volume 221 (2017) no. 1, pp. 179-234 | Zbl | DOI | MR
[HP11] The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc., Volume 84 (2011) no. 1, pp. 103-119 | DOI | MR | Zbl
[Kap06] Currents on free groups, Topological and asymptotic aspects of group theory (Contemporary Mathematics), Volume 394, American Mathematical Society, 2006, pp. 149-176 | MR | Zbl | DOI
[KL09] Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol., Volume 13 (2009) no. 3, pp. 1805-1833 | DOI | Zbl | MR
[KL10] Intersection form, laminations and currents on free groups, Geom. Funct. Anal., Volume 19 (2010) no. 5, pp. 1426-1467 | DOI | MR | Zbl
[Kla18] The Boundary at Infinity of the Curve Complex and the Relative Teichmüller Space (2018) (to appear in Groups, Geometry, and Dynamics) | arXiv
[KR14] On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 391-414 | Zbl | DOI | MR
[LL03] Irreducible automorphisms of have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 59-72 | DOI | MR | Zbl
[LS09] Connectivity of the space of ending laminations, Duke Math. J., Volume 150 (2009) no. 3, pp. 533-575 | DOI | MR | Zbl
[Mar95] Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, Ph. D. Thesis, University of California, Los Angeles, USA (1995), 87 pages | MR
[MM99] Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999) no. 1, pp. 103-149 | DOI | MR | Zbl
[Nie24] Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR | Zbl
[Rey12] Reducing systems for very small trees (2012) | arXiv
[Ser80] Trees, Springer, 1980 (translated from the French by John Stillwell) | MR | Zbl | DOI
[Sko96] Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | DOI | MR | Zbl
[Sta83] Topology of finite graphs, Invent. Math., Volume 71 (1983) no. 3, pp. 551-565 | DOI | MR | Zbl
[Vog08] What isouter space?, Notices Am. Math. Soc., Volume 55 (2008) no. 7, pp. 784-786 | MR | Zbl
[Whi36] On equivalent sets of elements in a free group, Ann. Math., Volume 37 (1936) no. 4, pp. 782-800 | DOI | MR | Zbl
Cité par Sources :





