[Conjugaison des sous-décalages de substitutions Pisot unimodulaires à des échanges de domaines]
We prove that any unimodular Pisot substitution subshift is measurably conjugate to a domain exchange in a Euclidean space which is a finite topological extension of a translation on a torus. This generalizes the pioneer works of Rauzy and Arnoux–Ito providing geometric realizations to any unimodular Pisot substitution without any additional combinatorial condition.
Nous prouvons que tout sous-décalage de substitution Pisot unimodulaire est mesurablement conjugué à un échange de domaine dans un espace euclidien qui est une extension topologique finie d’une translation sur un tore. Ceci étend les travaux pionniers de Rauzy et Arnoux–Ito sur les réalisations géométriques à toutes les substitutions de type Pisot unimodulaires sans aucune condition combinatoire supplémentaire.
Révisé le :
Accepté le :
Publié le :
Keywords: minimal Cantor systems, subshifts, domain exchanges, geometric realizations, eigenvalues, Pisot conjecture, substitutions
Durand, Fabien 1 ; Petite, Samuel 1
CC-BY 4.0
@article{AHL_2023__6__1259_0,
author = {Durand, Fabien and Petite, Samuel},
title = {Conjugacy of {Unimodular} {Pisot} {Substitution} {Subshifts} to {Domain} {Exchanges}},
journal = {Annales Henri Lebesgue},
pages = {1259--1289},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.188},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.188/}
}
TY - JOUR AU - Durand, Fabien AU - Petite, Samuel TI - Conjugacy of Unimodular Pisot Substitution Subshifts to Domain Exchanges JO - Annales Henri Lebesgue PY - 2023 SP - 1259 EP - 1289 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.188/ DO - 10.5802/ahl.188 LA - en ID - AHL_2023__6__1259_0 ER -
Durand, Fabien; Petite, Samuel. Conjugacy of Unimodular Pisot Substitution Subshifts to Domain Exchanges. Annales Henri Lebesgue, Tome 6 (2023), pp. 1259-1289. doi: 10.5802/ahl.188
[ABB + 15] On the Pisot substitution conjecture, Mathematics of aperiodic order (Progress in Mathematics), Volume 309, Springer, 2015, pp. 33-72 | Zbl | DOI | MR
[Ada04] Symbolic discrepancy and self-similar dynamics, Ann. Inst. Fourier, Volume 54 (2004), pp. 2201-2234 | Zbl | DOI | MR | Numdam
[AI01] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 181-207 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | MR | Zbl
[AR91] Représentation géométrique de suites de complexité , Bull. Soc. Math. Fr., Volume 119 (1991), pp. 199-215 | Zbl | DOI | Numdam
[Bar16] Pure discrete spectrum for a class of one-dimensional substitution tiling systems, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 1159-1173 | Zbl | DOI | MR
[Bar18] The Pisot conjecture for -substitutions, Ergodic Theory Dyn. Syst., Volume 38 (2018), pp. 444-472 | Zbl | DOI | MR
[BBK06] Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to -shifts, Ann. Inst. Fourier, Volume 56 (2006), pp. 2213-2248 (Numération, pavages, substitutions) | Zbl | DOI | MR
[BD02] Coincidence for substitutions of Pisot type, Bull. Soc. Math. Fr., Volume 130 (2002), pp. 619-626 | Zbl | DOI | MR | Numdam
[BDM05] Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems, J. Lond. Math. Soc., II. Ser., Volume 72 (2005), pp. 799-816 | Zbl | DOI | MR
[BDM10] On the eigenvalues of finite rank Bratteli-Vershik dynamical systems, Ergodic Theory Dyn. Syst., Volume 30 (2010), pp. 639-664 | DOI | MR | Zbl
[BJS12] Substitutive Arnoux–Rauzy sequences have pure discrete spectrum, Unif. Distrib. Theory, Volume 7 (2012), pp. 173-197 | Zbl | MR
[BK06] Geometric theory of unimodular Pisot substitutions, Am. J. Math., Volume 128 (2006), pp. 1219-1282 | Zbl | DOI | MR
[CS01] Geometric representation of substitutions of Pisot type, Trans. Am. Math. Soc., Volume 353 (2001), pp. 5121-5144 | Zbl | DOI | MR
[Dek78] The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 41 (1978), pp. 221-239 | Zbl | DOI
[DHS99] Substitutive dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dyn. Syst., Volume 19 (1999), pp. 953-993 | Zbl | DOI
[Dur96] Contributions à l’étude des suites et systèmes dynamiques substitutifs, Ph. D. Thesis, Université de la Méditerranée (Aix-Marseille II), France (1996)
[Dur98a] A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 | Zbl | DOI | MR
[Dur98b] A generalization of Cobham’s theorem, Theor. Comput. Sci., Volume 31 (1998), pp. 169-185 | Zbl | MR
[Dur98c] Sur les ensembles d’entiers reconnaissables, J. Théor. Nombres Bordeaux, Volume 10 (1998), pp. 65-84 | Zbl | DOI | MR | Numdam
[EI05] Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci., Volume 7 (2005) no. 1, pp. 81-121 | Zbl | MR
[FBF + 02] Substitutions in dynamics, arithmetics and combinatorics (Fogg, N. Pytheas; Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, Anne, eds.), Lecture Notes in Mathematics, 1794, Springer, 2002 | Zbl | DOI
[FMN96] Substitution dynamical systems: algebraic characterization of eigenvalues, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996), pp. 519-533 | Zbl | DOI | MR | Numdam
[Had98] Sur la forme des lignes géodésiques à l’infini et sur les géodésiques des surfaces réglées du second ordre, Bull. Soc. Math. Fr., Volume 26 (1898), pp. 195-216 | Zbl | DOI | Numdam
[Hos86] Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dyn. Syst., Volume 6 (1986), pp. 529-540 | Zbl | DOI
[Hos92] Représentation géométrique des substitutions sur 2 lettres (1992) (Unpublished manuscript)
[HS03] Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory Dyn. Syst., Volume 23 (2003), pp. 533-540 | Zbl | MR
[HZ98] Geometric realizations of substitutions, Bull. Soc. Math. Fr., Volume 126 (1998), pp. 149-179 | Zbl | DOI | MR | Numdam
[Kul95] Zero-dimensional covers of finite-dimensional dynamical systems, Ergodic Theory Dyn. Syst., Volume 15 (1995), pp. 939-950 | Zbl | DOI | MR
[Mor21] Recurrent geodesics on a surface of negative curvature, Trans. Am. Math. Soc., Volume 22 (1921), pp. 84-100 | Zbl | DOI | MR
[Mos92] Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theor. Comput. Sci., Volume 99 (1992), pp. 327-334 | Zbl | DOI | MR
[Mos96] Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. Fr., Volume 124 (1996), pp. 329-346 | MR | Zbl | DOI | Numdam
[Que10] Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, 1294, Springer, 2010 | MR | DOI | Zbl
[Rau82] Nombres algébriques et substitutions, Bull. Soc. Math. Fr., Volume 110 (1982), pp. 147-178 | Zbl | DOI | Numdam
[Sie03] Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dyn. Syst., Volume 23 (2003), pp. 1247-1273 | MR | Zbl | DOI
[Sie04] Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier, Volume 54 (2004), pp. 341-381 | Zbl | MR
[Sin06] Pisot substitutions and beyond, Ph. D. Thesis, Bielefeld University, Germany (2006)
[Sol21] (2021) (Personal communication)
Cité par Sources :





