Spectral decomposition of some non-self-adjoint operators
[Décomposition spectrale d’opérateurs non auto-adjoints]
Annales Henri Lebesgue, Tome 6 (2023), pp. 1115-1167

We consider non-self-adjoint operators in Hilbert spaces of the form H=H 0 +CWC, where H 0 is self-adjoint, W is bounded and C is bounded and relatively compact with respect to H 0 . We suppose that C is a metric operator and that C(H 0 -z) -1 C is uniformly bounded in z. We define the spectral singularities of H as the points of the essential spectrum λσ ess (H) such that C(H-λ±iε) -1 CW does not have a limit as ε0 + . We prove that the spectral singularities of H are in one-to-one correspondence with the eigenvalues, associated to resonant states, of an extension of H to a larger Hilbert space. Next, we show that the asymptotically disappearing states for H, i.e. the vectors φ such that e ±itH φ0 as t, coincide with the finite linear combinaisons of generalized eigenstates of H corresponding to eigenvalues λ, Im(λ)>0. Finally, we define the absolutely continuous spectral subspace of H and show that it satisfies ac (H)= p (H * ) , where p (H * ) stands for the point spectral subspace of H * . We thus obtain a direct sum decomposition of the Hilbert spaces in terms of spectral subspaces of H. One of the main ingredients of our proofs is a spectral resolution formula for a bounded operator r(H) regularizing the identity at spectral singularities. Our results apply to Schrödinger operators with complex potentials.

Nous considérons une classe d’opérateurs non auto-adjoints sur un espace de Hilbert, de la forme H=H 0 +CWC, où H 0 est auto-adjoint, W est borné et C est borné et relativement compact par rapport à H 0 . On suppose que C est un opérateur métrique et que C(H 0 -z) -1 C est uniformément borné pour z. Nous définissons les singularités spectrales de H comme les points du spectre essentiel λσ ess (H) tels que C(H-λ±iε) -1 CW n’a pas de limite quand ε0 + . Nous prouvons que les singularités spectrales de H sont en bijection avec les valeurs propres associées à des états résonants d’une extension de H à un espace de Hilbert plus gros. Ensuite, nous montrons que les états qui disparaissent à l’infini pour H, c’est à dire les φ tels que e ±itH φ0 quand t, coïncident avec les vecteurs propres généralisés de H associés à des valeurs propres λ, Im(λ)>0. Finalement, nous définissons le sous-espace spectral absolument continu de H et montrons qu’il satisfait ac (H)= p (H * ) , où p (H * ) est le sous-espace spectral ponctuel de l’opérateur adjoint H * . Nous obtenons ainsi une décomposition en somme directe de l’espace de Hilbert en terme de sous-espaces spectraux de H. L’un des arguments principaux de nos preuves est une formule de résolution spectrale pour un opérateur borné r(H) régularisant l’opérateur identité au voisinage des singularités spectrales. Nos résultats s’appliquent à des opérateurs de Schrödinger avec des potentiels complexes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.185
Classification : 47A10, 47A60, 47A65, 47B28, 81Q12, 81U24
Keywords: Non-self-adjoint operators, Spectral theory, Spectral singularities, Resonances, Schrödinger operators

Faupin, Jérémy 1 ; Frantz, Nicolas 1

1 Université de Lorraine, CNRS, IECL, F-57000 Metz, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__1115_0,
     author = {Faupin, J\'er\'emy and Frantz, Nicolas},
     title = {Spectral decomposition of some non-self-adjoint operators},
     journal = {Annales Henri Lebesgue},
     pages = {1115--1167},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.185},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.185/}
}
TY  - JOUR
AU  - Faupin, Jérémy
AU  - Frantz, Nicolas
TI  - Spectral decomposition of some non-self-adjoint operators
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 1115
EP  - 1167
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.185/
DO  - 10.5802/ahl.185
LA  - en
ID  - AHL_2023__6__1115_0
ER  - 
%0 Journal Article
%A Faupin, Jérémy
%A Frantz, Nicolas
%T Spectral decomposition of some non-self-adjoint operators
%J Annales Henri Lebesgue
%D 2023
%P 1115-1167
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.185/
%R 10.5802/ahl.185
%G en
%F AHL_2023__6__1115_0
Faupin, Jérémy; Frantz, Nicolas. Spectral decomposition of some non-self-adjoint operators. Annales Henri Lebesgue, Tome 6 (2023), pp. 1115-1167. doi: 10.5802/ahl.185

[Aaf21] Aafarani, Maha Large time behavior of solutions to Schrödinger equation with complex-valued potential, J. Math. Pures Appl., Volume 150 (2021), pp. 64-111 | Zbl | MR | DOI

[Agm75] Agmon, Shmuel Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (1975), pp. 151-218 | Zbl | Numdam

[AT13] Antoine, Jean-Pierre; Trapani, C. Partial inner product spaces, metric operators and generalized hermicity, J. Phys. A. Math. Theor., Volume 46 (2013), 025204 | DOI | Zbl

[BB98] Bender, Carl M.; Boettcher, Stefan Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., Volume 80 (1998), pp. 5243-5246 | Zbl | DOI | MR

[BC22] Boussaid, Nabile; Comech, Andrew Limiting absorption principle and virtual levels of operators in Banach spaces, Ann. Math., Volume 46 (2022) no. 1, pp. 161-180 | Zbl | MR

[BGSZ15] Bagarello, Fabio; Gazeau, Jean-Pierre; Szafraniec, Franciszek H.; Znojil, Miloslav Non-Selfadjoint Operators in Quantum Physics. Mathematical Aspects, John Wiley & Sons, 2015 | Zbl | DOI

[BK08] Borisov, Denis; Krejcirik, David PT-symmetric waveguides, Integral Equations Oper. Theory, Volume 62 (2008) no. 4, pp. 489-515 | Zbl | DOI

[BK12] Borisov, Denis; Krejcirik, David The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions, Asymptotic Anal., Volume 76 (2012), pp. 49-59 | Zbl | DOI | MR

[Boh36] Bohr, Niels Neutron capture and nuclear constitution, Nature, Volume 137 (1936), pp. 344-348 | Zbl | DOI

[BtEG20] Behrndt, J.; ter Elst, A. F. M.; Gesztesy, F. The Generalized Birman–Schwinger Principle (2020) (https://arxiv.org/abs/2005.01195)

[CFK20] Cossetti, Lucrezia; Fanelli, Luca; Krejcirik, David Absence of eigenvalues of Dirac and Pauli Hamiltonians via the method of multipliers, Commun. Math. Phys., Volume 379 (2020), pp. 633-691 | Zbl | DOI | MR

[CFKS87] Cycon, Hans L.; Froese, Richard G.; Kirsch, Werner; Simon, Barry Schrödinger operators, with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer, 1987 | Zbl

[Dav78] Davies, E. Brian Two-channel Hamiltonians and the optical model of nuclear scattering, Ann. Inst. H. Poincaré Sect. A (N.S.), Volume 29 (1978), pp. 395-413 | Zbl | MR | Numdam

[Dav80a] Davies, E. Brian Nonunitary scattering and capture. I. Hilbert space theory, Commun. Math. Phys., Volume 71 (1980) no. 3, pp. 277-288 | Zbl | DOI | MR

[Dav80b] Davies, E. Brian One-Parameter Semigroups, London Mathematical Society Monographs, 15, Academic Press Inc., 1980 | Zbl | MR

[Dav95] Davies, E. Brian The functional calculus, J. Lond. Math. Soc., Volume 52 (1995), pp. 166-176 | Zbl | DOI | MR

[Dav07] Davies, E. Brian Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, 2007 | Zbl | DOI | MR

[DDT01] Dorey, Patrick; Dunning, Clare; Tateo, Roberto Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics, J. Phys. A. Math. Gen., Volume 34 (2001), pp. 5679-5704 | Zbl | DOI | MR

[Die61] Dieudonné, Jean Quasi-Hermitian operators, Proceedings of the International Symposium on Linear Spaces, Volume 1960 (1961), pp. 115-123 | Zbl

[DS71] Dunford, Nelson; Schwartz, Jacob T. Linear operators. Part III: Spectral operators, Pure and Applied Mathematics, 7, Interscience Publishers; John Wiley & Sons, 1971 | Zbl

[Dun58] Dunford, Nelson A survey of the theory of spectral operators, Bull. Am. Math. Soc., Volume 64 (1958), pp. 217-274 | Zbl | DOI | MR

[DZ19] Dyatlov, Semyon; Zworski, Maciej Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019 | Zbl | DOI

[EE87] Edmunds, David E.; Evans, William D. Spectral theory and differential operators, Oxford Mathematical Monographs, Oxford University Press, 1987 | Zbl

[EGMK + 18] El-Ganainy, Ramy; Makris, Konstantinos G.; Khajavikhan, Mercedeh; Musslimani, Ziad H.; Rotter, Stefan; Christodoulides, Demetrios N. Non-Hermitian physics and PT symmetry, Nat. Phys., Volume 14 (2018), pp. 11-19 | DOI

[EN00] Engel, Klaus-Jochen; Nagel, Rainer One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000 | Zbl

[Fau21] Faupin, Jérémy Generic nature of asymptotic completeness in dissipative scattering theory, Rev. Math. Phys., Volume 33 (2021) no. 1, 206001 | Zbl | MR

[Fes58a] Feshbach, Herman The optical model and its justification, Ann. Rev. Nucl. Sci., Volume 8 (1958), pp. 49-104 | DOI

[Fes58b] Feshbach, Herman Unified theory of nuclear reactions, Ann. Phys., Volume 5 (1958), pp. 357-390 | Zbl | DOI | MR

[Fes62] Feshbach, Herman A unified theory of nuclear reaction. II., Ann. Phys., Volume 19 (1962), pp. 287-313 | Zbl | DOI | MR

[Fes92] Feshbach, Herman Theoretical Nuclear Physics, Nuclear Reactions, John Wiley & Sons, 1992

[FF18] Faupin, Jérémy; Fröhlich, Jürg Asymptotic completeness in dissipative scattering theory, Adv. Math., Volume 340 (2018), pp. 300-362 | Zbl | DOI | MR

[FKV18] Fanelli, Luca; Krejcirik, David; Vega, Luis Spectral stability of Schrodinger operators with subordinated complex potentials, J. Spectr. Theory, Volume 8 (2018), pp. 575-604 | Zbl | DOI | MR

[FLS16] Frank, Rupert L.; Laptev, Ari; Safronov, Oleg On the number of eigenvalues of Schrödinger operators with complex potentials, J. Lond. Math. Soc., Volume 94 (2016), pp. 377-390 | Zbl | DOI

[FN19] Faupin, Jérémy; Nicoleau, François Scattering matrices for dissipative quantum systems, J. Funct. Anal., Volume 9 (2019), pp. 3062-3097 | Zbl | DOI | MR

[FPW54] Feshbach, Herman; Porter, Charles; Weisskopf, Victor Model for nuclear reactions with neutrons, Phys. Rev., II. Ser., Volume 96 (1954), pp. 448-464 | Zbl

[GGH13] Georgescu, Vladimir; Gérard, Christian; Häfner, Dietrich Boundary values of resolvents of selfadjoint operators in Krein spaces, J. Funct. Anal., Volume 265 (2013) no. 12, pp. 3245-3304 | Zbl | DOI | MR

[GLMZ05] Gesztesy, Fritz; Latushkin, Yuri; Mitrea, Marius; Zinchenko, Maxim Non-self-adjoint operators, infinite determinants and some applications, Russ. J. Math. Phys., Volume 12 (2005), pp. 443-471 | Zbl

[Gol70] Goldstein, Charles Perturbation of non-selfadjoint operators. I, Arch. Ration. Mech. Anal., Volume 37 (1970), pp. 268-296 | Zbl | DOI | MR

[Gol71] Goldstein, Charles Perturbation of non-selfadjoint operators. II, Arch. Ration. Mech. Anal., Volume 42 (1971), pp. 380-402 | Zbl | DOI | MR

[HK22] Hansmann, Marcel; Krejcirik, David The abstract Birman–Schwinger principle and spectral stability, J. Anal. Math., Volume 148 (2022), pp. 361-398 | Zbl | DOI | MR

[Hod71] Hodgson, P. E. The nuclear optical model, Rep. Prog. Phys., Volume 34 (1971), pp. 765-819 | DOI

[How74] Howland, James S. Puiseux series for resonances at an embedded eigenvalue, Pac. J. Math., Volume 55 (1974), pp. 157-176 | Zbl | DOI | MR

[Hui71] Huige, Gustavus E. Perturbation theory of some spectral operators, Commun. Pure Appl. Math., Volume 24 (1971), pp. 741-757 | Zbl | DOI | MR

[JK79] Jensen, Arne; Kato, Tosio Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979) no. 3, pp. 583-611 | Zbl

[Kat65] Kato, Tosio Wave operators and similarity for some non-selfadjoint operators, Math. Ann., Volume 162 (1965), pp. 258-279 | Zbl | DOI | MR

[KBZ06] Krejcirik, David; Bila, Hynek; Znojil, Miloslav Closed formula for the metric in the Hilbert space of a PT-symmetric model, J. Phys. A. Math. Gen., Volume 39 (2006), pp. 10143-10153 | Zbl | DOI | MR

[KK66] Konno, Reiji; Kuroda, Shige T. On the finiteness of perturbed eigenvalues, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 13 (1966), pp. 55-63 | Zbl | MR

[KN09] Kiselev, Alexander V.; Naboko, Serguei N. Nonself-adjoint operators with almost Hermitian spectrum: Cayley identity and some questions of spectral structure, Ark. Mat., Volume 47 (2009), pp. 91-125 | Zbl | DOI | MR

[Kre08] Krejcirik, David Calculation of the metric in the Hilbert space of a PT-symmetric model via the spectral theorem, J. Phys. A. Math. Theor., Volume 41 (2008), 244012 | Zbl | MR

[Kre17] Krejcirik, David Mathematical aspects of quantum mechanics with non-self-adjoint operators, Ph. D. Thesis, Universitas Carolina Pragensis (2017) (Habilitation Thesis)

[KSTV15] Krejcirik, David; Siegl, Petr; Tater, Milos; Viola, Joe Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 56 (2015), 103513 | Zbl | MR

[Lon09] Longhi, S. Bloch Oscillations in Complex Crystals with PT Symmetry, Phys. Rev. Lett., Volume 103 (2009), 123601 | DOI

[Mar75] Martin, Philippe A. Scattering theory with dissipative interactions and time delay, Nuovo Cimento, XI. Ser. B, Volume 30 (1975), pp. 217-238 | DOI | MR

[Moc67] Mochizuki, Kiyoshi On the large perturbation by a class of non-selfadjoint operators, J. Math. Soc. Japan, Volume 19 (1967), pp. 123-158 | Zbl | MR

[Moc68] Mochizuki, Kiyoshi Eigenfunction expansions associated with the Schrödinger operator with a complex potential and the scattering theory, Publ. Res. Inst. Math. Sci. A, Volume 4 (1968), pp. 419-466 | Zbl | DOI

[Mos02] Mostafazadeh, Ali Pseudo-Hermiticity versus PT symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys., Volume 43 (2002) no. 5, pp. 2814-2816 | Zbl | DOI

[Nab76] Naboko, Serguei N. Absolutely continuous spectrum of a nondissipative operator, and a functional model. I, J. Sov. Math., Volume 16 (1976), pp. 1109-1117 | Zbl | DOI

[RBM + 12] Regensburger, Alois; Bersch, Christoph; Miri, Mohammad-Ali; Onishchukov, Georgy; Christodoulides, Demetrios N.; Peschel, Ulf Parity-time synthetic photonic lattices, Nature, Volume 488 (2012), pp. 167-171 | DOI

[RMEG + 10] Rüter, Christian E.; Makris, Konstantinos G.; El-Ganainy, Ramy; Christodoulides, Demetrios N.; Segev, Mordechai; Kip, Detlef Observation of parity-time symmetry in optics, Nature Phys., Volume 6 (2010), pp. 192-195 | DOI

[RS75] Reed, M.; Simon, Barry Methods of modern mathematical physics. I–IV, Academic Press Inc.; Harcourt Brace Jovanovich, 1975

[Rud80] Rudin, Walter Function theory in the Unit Ball of n , Grundlehren der Mathematischen Wissenschaften, 241, Springer, 1980 | Zbl | DOI

[Sch60] Schwartz, Jack Some non-selfadjoint operators, Commun. Pure Appl. Math., Volume 13 (1960), pp. 609-639 | Zbl | DOI | MR

[SGH92] Scholtz, Frederik G.; Geyer, Hendrik B.; Hahne, F. J. W. Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Phys., Volume 213 (1992), pp. 74-101 | Zbl | DOI | MR

[Shi02] Shin, Kwang-Cheul On the reality of the eigenvalues for a class of PT-symmetric oscillators, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 543-564 | Zbl | DOI | MR

[Wan11] Wang, Xue Ping Number of eigenvalues for dissipative Schrödinger operators under perturbation, J. Math. Pures Appl., Volume 96 (2011) no. 5, pp. 409-422 | Zbl | DOI

[Wan12] Wang, Xue Ping Time-decay of semigroups generated by dissipative Schrödinger operators, J. Differ. Equations, Volume 253 (2012) no. 12, pp. 3523-3542 | Zbl | DOI

[Wan20] Wang, Xue Ping Gevrey estimates of the resolvent and sub-exponential time-decay for the heat and Schrödinger semigroups, J. Math. Pures Appl., Volume 135 (2020), pp. 284-338 | Zbl | DOI

[WB20] Wen, Zichao; Bender, Carl M. PT-symmetric potentials having continuous spectra, J. Phys. A. Math. Gen., Volume 53 (2020) no. 37, 375302, 16 pages | Zbl | MR

[Yaf92] Yafaev, Dimitri R. Mathematical scattering theory, Translations of Mathematical Monographs, 105, American Mathematical Society, 1992 | Zbl | DOI

Cité par Sources :