[Polynômes de Hermite matriciels, déterminants aléatoires et géométrie des champs gaussiens]
We study generalized Hermite polynomials with rectangular matrix arguments arising in multivariate statistical analysis. We argue that these are well-suited for expressing the Wiener–Itô chaos expansion of functionals of the spectral measure associated with Gaussian matrices. More specifically, we obtain the Wiener chaos expansion of Gaussian determinants of the form and prove that, in the setting where the rows of are i.i.d. Gaussian vectors, its projection coefficients admit a geometric interpretation in terms of intrinsic volumes of ellipsoids, thus extending the framework of Kabluchko and Zaporozhets (2012). Our proofs rely on a crucial relation between Hermite polynomials and Laguerre polynomials. We introduce the matrix analog of the classical Mehler’s formula for the Ornstein-Uhlenbeck semigroup and prove that matrix Hermite polynomials are eigenfunctions of these operators. We apply our results to the asymptotic study of a total variation associated with vectors of Arithmetic Random Waves on the full three-torus.
Nous étudions les polynômes de Hermite généralisés dont la variable est une matrice rectangulaire. Nous montrons que ceux-ci sont adaptés pour obtenir la décomposition en chaos de Wiener–Itô de variables aléatoires qui dépendent de la mesure spectrale associée avec une matrice de loi normale. Plus précisément, nous obtenons la décomposition en chaos de déterminants gaussiens de la forme et montrons que, dans le cas où les lignes de sont des vecteurs gaussiens i.i.d, les coefficients de projection associés avec cette décomposition admettent une interprétation géométrique en termes du volume intrinsèque d’elliposoides, permettant ainsi de généraliser un résultat de Kabluchko et Zaporozhets (2012). Notre démonstration repose sur une relation entre les polynômes de Hermite et les polynômes de Laguerre. Dans une deuxième partie, nous introduisons l’analogue matriciel de la formule de Mehler pour l’opérateur d’Ornstein–Uhlenbeck et déduisons que les polynômes de Hermite généralisés sont des fonctions propres de ces opérateurs. Nous appliquons nos résultats à l’étude asymptotique d’une notion de variation totale associée aux ondes aléatoires arithmétiques définies sur le tore à trois dimensions.
Révisé le :
Accepté le :
Publié le :
Keywords: Generalized Hermite polynomials, Gaussian random matrices, Zonal polynomials, Wiener chaos expansions, Intrinsic and mixed volumes, Arithmetic Random Waves, Limit Theorems
Notarnicola, Massimo 1
CC-BY 4.0
@article{AHL_2023__6__975_0,
author = {Notarnicola, Massimo},
title = {Matrix {Hermite} polynomials, {Random} determinants and the geometry of {Gaussian} fields},
journal = {Annales Henri Lebesgue},
pages = {975--1030},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.183},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.183/}
}
TY - JOUR AU - Notarnicola, Massimo TI - Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields JO - Annales Henri Lebesgue PY - 2023 SP - 975 EP - 1030 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.183/ DO - 10.5802/ahl.183 LA - en ID - AHL_2023__6__975_0 ER -
Notarnicola, Massimo. Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields. Annales Henri Lebesgue, Tome 6 (2023), pp. 975-1030. doi: 10.5802/ahl.183
[AT07] Random fields and geometry, Springer Monographs in Mathematics, Springer, 2007 | MR | Zbl
[AW09] Level sets and extrema of random processes and fields, John Wiley & Sons, 2009 | DOI | MR | Zbl
[Ber77] Regular and irregular semiclassical wavefunctions, J. Phys. A. Math. Gen., Volume 10 (1977) no. 12, pp. 2083-2091 | MR | Zbl | DOI
[Ber02] Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A. Math. Gen., Volume 35 (2002) no. 13, pp. 3025-3038 | MR | Zbl | DOI
[BM19] Random waves on : nodal area variance and lattice point correlations, Int. Math. Res. Not. (2019) no. 10, pp. 3032-3075 | DOI | MR | Zbl
[Cam19] Nodal area distribution for arithmetic random waves, Trans. Am. Math. Soc., Volume 372 (2019) no. 5, pp. 3539-3564 | DOI | MR | Zbl
[Chi92] Properties of Hermite and Laguerre polynomials in matrix argument and their applications, Linear Algebra Appl., Volume 176 (1992), pp. 237-260 | DOI | MR
[Chi03] Statistics on special manifolds, Lecture Notes in Statistics, 174, Springer, 2003 | DOI | MR | Zbl
[CMW16a] Fluctuations of the Euler–Poincaré characteristic for random spherical harmonics, Proc. Am. Math. Soc., Volume 144 (2016) no. 11, pp. 4759-4775 | DOI | MR | Zbl
[CMW16b] On the distribution of the critical values of random spherical harmonics, J. Geom. Anal., Volume 26 (2016) no. 4, pp. 3252-3324 | DOI | MR | Zbl
[DEL21] On 3-dimensional Berry’s model, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 18 (2021) no. 1, pp. 379-399 | Zbl | MR
[DNPR19] Phase singularities in complex arithmetic random waves, Electron. J. Probab., Volume 24 (2019), 71 | DOI | MR | Zbl
[Dow72] Orientation statistics, Biometrika, Volume 59 (1972), pp. 665-676 | DOI | MR | Zbl
[DP12] Weak notions of Jacobian determinant and relaxation, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 1, pp. 181-207 | DOI | MR | Zbl | Numdam
[FFM04] On the total variation of the Jacobian, J. Funct. Anal., Volume 207 (2004) no. 1, pp. 1-32 | DOI | MR | Zbl
[GN00] Matrix variate distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 104, Chapman & Hall/CRC, 2000 | MR | Zbl
[GR14] Table of integrals, series, and products, Academic Press Inc., 2014 | Zbl
[Hay69] On the distribution of the latent roots of a positive definite random symmetric matrix. I, Ann. Inst. Stat. Math., Volume 21 (1969), pp. 1-21 | DOI | MR | Zbl
[Jam61] Zonal polynomials of the real positive definite symmetric matrices, Ann. Math., Volume 74 (1961), pp. 456-469 | DOI | MR | Zbl
[KKW13] Nodal length fluctuations for arithmetic random waves, Ann. Math., Volume 177 (2013) no. 2, pp. 699-737 | DOI | MR | Zbl
[Koc96] Rotational symmetry of the Hermite projection operators, Proc. Am. Math. Soc., Volume 124 (1996) no. 5, pp. 1539-1547 | DOI | MR | Zbl
[MP11] Random fields on the sphere, London Mathematical Society Lecture Note Series, 389, Cambridge University Press, 2011 (Representation, limit theorems and cosmological applications) | Zbl | DOI | MR
[MPH95] Bilinear forms and zonal polynomials, Lecture Notes in Statistics, 102, Springer, 1995 | DOI | MR | Zbl
[MPRW16] Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal., Volume 26 (2016) no. 3, pp. 926-960 | DOI | MR | Zbl
[MRW20] The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 56 (2020) no. 1, pp. 374-390 | DOI | MR | Zbl
[Mui82] Aspects of multivariate statistical theory, John Wiley & Sons, 1982 (Wiley Series in Probability and Mathematical Statistics) | MR | Zbl | DOI
[Not21] Fluctuations of nodal sets on the 3-torus and general cancellation phenomena, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 18 (2021), pp. 1127-1194 | Zbl | MR
[NP12] Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, 192, Cambridge University Press, 2012 (From Stein’s method to universality) | DOI | MR | Zbl
[NPR19] Nodal statistics of planar random waves, Commun. Math. Phys., Volume 369 (2019) no. 1, pp. 99-151 | DOI | MR | Zbl
[Nua95] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 1995 | DOI | MR | Zbl
[ORW08] The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 299-335 | Zbl | DOI | MR | Numdam
[PR18] Quantitative limit theorems for local functionals of arithmetic random waves, Computation and combinatorics in dynamics, stochastics and control (Abel Symposia), Volume 13, Springer, 2018, pp. 659-689 | MR | Zbl | DOI
[PV20] Gaussian random measures generated by Berry’s nodal sets, J. Stat. Phys., Volume 178 (2020) no. 4, pp. 996-1027 | DOI | MR | Zbl
[RW08] On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré, Volume 9 (2008) no. 1, pp. 109-130 | DOI | MR | Zbl
[SW08] Stochastic and integral geometry, Probability and Its Applications, Springer, 2008 | DOI | MR | Zbl
[Tha93] Hermite expansions on for radial functions, Proc. Am. Math. Soc., Volume 118 (1993) no. 4, pp. 1097-1102 | DOI | MR | Zbl
[Vit91] Expected absolute random determinants and zonoids, Ann. Appl. Probab., Volume 1 (1991) no. 2, pp. 293-300 | MR | Zbl
[Wig10] Fluctuations of the nodal length of random spherical harmonics, Commun. Math. Phys., Volume 298 (2010) no. 3, pp. 787-831 | DOI | MR | Zbl
[ZK12] Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields, Zap. Nauchn. Semin. (POMI), Volume 408 (2012), pp. 187-196 | DOI | MR | Zbl
Cité par Sources :





