Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields
[Polynômes de Hermite matriciels, déterminants aléatoires et géométrie des champs gaussiens]
Annales Henri Lebesgue, Tome 6 (2023), pp. 975-1030

We study generalized Hermite polynomials with rectangular matrix arguments arising in multivariate statistical analysis. We argue that these are well-suited for expressing the Wiener–Itô chaos expansion of functionals of the spectral measure associated with Gaussian matrices. More specifically, we obtain the Wiener chaos expansion of Gaussian determinants of the form det(XX T ) 1/2 and prove that, in the setting where the rows of X are i.i.d. Gaussian vectors, its projection coefficients admit a geometric interpretation in terms of intrinsic volumes of ellipsoids, thus extending the framework of Kabluchko and Zaporozhets (2012). Our proofs rely on a crucial relation between Hermite polynomials and Laguerre polynomials. We introduce the matrix analog of the classical Mehler’s formula for the Ornstein-Uhlenbeck semigroup and prove that matrix Hermite polynomials are eigenfunctions of these operators. We apply our results to the asymptotic study of a total variation associated with vectors of Arithmetic Random Waves on the full three-torus.

Nous étudions les polynômes de Hermite généralisés dont la variable est une matrice rectangulaire. Nous montrons que ceux-ci sont adaptés pour obtenir la décomposition en chaos de Wiener–Itô de variables aléatoires qui dépendent de la mesure spectrale associée avec une matrice de loi normale. Plus précisément, nous obtenons la décomposition en chaos de déterminants gaussiens de la forme det(XX T ) 1/2 et montrons que, dans le cas où les lignes de X sont des vecteurs gaussiens i.i.d, les coefficients de projection associés avec cette décomposition admettent une interprétation géométrique en termes du volume intrinsèque d’elliposoides, permettant ainsi de généraliser un résultat de Kabluchko et Zaporozhets (2012). Notre démonstration repose sur une relation entre les polynômes de Hermite et les polynômes de Laguerre. Dans une deuxième partie, nous introduisons l’analogue matriciel de la formule de Mehler pour l’opérateur d’Ornstein–Uhlenbeck et déduisons que les polynômes de Hermite généralisés sont des fonctions propres de ces opérateurs. Nous appliquons nos résultats à l’étude asymptotique d’une notion de variation totale associée aux ondes aléatoires arithmétiques définies sur le tore à trois dimensions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.183
Classification : 60G60, 60B10, 60D05, 58J50, 35P20
Keywords: Generalized Hermite polynomials, Gaussian random matrices, Zonal polynomials, Wiener chaos expansions, Intrinsic and mixed volumes, Arithmetic Random Waves, Limit Theorems

Notarnicola, Massimo 1

1 Unité de Recherche en Mathématiques, Université du Luxembourg, Luxembourg
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__975_0,
     author = {Notarnicola, Massimo},
     title = {Matrix {Hermite} polynomials, {Random} determinants and the geometry of {Gaussian} fields},
     journal = {Annales Henri Lebesgue},
     pages = {975--1030},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.183},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.183/}
}
TY  - JOUR
AU  - Notarnicola, Massimo
TI  - Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 975
EP  - 1030
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.183/
DO  - 10.5802/ahl.183
LA  - en
ID  - AHL_2023__6__975_0
ER  - 
%0 Journal Article
%A Notarnicola, Massimo
%T Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields
%J Annales Henri Lebesgue
%D 2023
%P 975-1030
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.183/
%R 10.5802/ahl.183
%G en
%F AHL_2023__6__975_0
Notarnicola, Massimo. Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields. Annales Henri Lebesgue, Tome 6 (2023), pp. 975-1030. doi: 10.5802/ahl.183

[AT07] Adler, Robert J.; Taylor, Jonathan E. Random fields and geometry, Springer Monographs in Mathematics, Springer, 2007 | MR | Zbl

[AW09] Azaïs, Jean-Marc; Wschebor, Mario Level sets and extrema of random processes and fields, John Wiley & Sons, 2009 | DOI | MR | Zbl

[Ber77] Berry, Michael V. Regular and irregular semiclassical wavefunctions, J. Phys. A. Math. Gen., Volume 10 (1977) no. 12, pp. 2083-2091 | MR | Zbl | DOI

[Ber02] Berry, Michael V. Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A. Math. Gen., Volume 35 (2002) no. 13, pp. 3025-3038 | MR | Zbl | DOI

[BM19] Benatar, Jacques; Maffucci, Riccardo W. Random waves on 𝕋 3 : nodal area variance and lattice point correlations, Int. Math. Res. Not. (2019) no. 10, pp. 3032-3075 | DOI | MR | Zbl

[Cam19] Cammarota, Valentina Nodal area distribution for arithmetic random waves, Trans. Am. Math. Soc., Volume 372 (2019) no. 5, pp. 3539-3564 | DOI | MR | Zbl

[Chi92] Chikuse, Yasuko Properties of Hermite and Laguerre polynomials in matrix argument and their applications, Linear Algebra Appl., Volume 176 (1992), pp. 237-260 | DOI | MR

[Chi03] Chikuse, Yasuko Statistics on special manifolds, Lecture Notes in Statistics, 174, Springer, 2003 | DOI | MR | Zbl

[CMW16a] Cammarota, Valentina; Marinucci, Domenico; Wigman, Igor Fluctuations of the Euler–Poincaré characteristic for random spherical harmonics, Proc. Am. Math. Soc., Volume 144 (2016) no. 11, pp. 4759-4775 | DOI | MR | Zbl

[CMW16b] Cammarota, Valentina; Marinucci, Domenico; Wigman, Igor On the distribution of the critical values of random spherical harmonics, J. Geom. Anal., Volume 26 (2016) no. 4, pp. 3252-3324 | DOI | MR | Zbl

[DEL21] Dalmao, Federico; Estrade, Anne; León, José On 3-dimensional Berry’s model, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 18 (2021) no. 1, pp. 379-399 | Zbl | MR

[DNPR19] Dalmao, Federico; Nourdin, Ivan; Peccati, Giovanni; Rossi, Maurizia Phase singularities in complex arithmetic random waves, Electron. J. Probab., Volume 24 (2019), 71 | DOI | MR | Zbl

[Dow72] Downs, Thomas D. Orientation statistics, Biometrika, Volume 59 (1972), pp. 665-676 | DOI | MR | Zbl

[DP12] De Philippis, Guido Weak notions of Jacobian determinant and relaxation, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 1, pp. 181-207 | DOI | MR | Zbl | Numdam

[FFM04] Fonseca, Irene; Fusco, Nicola; Marcellini, Paolo On the total variation of the Jacobian, J. Funct. Anal., Volume 207 (2004) no. 1, pp. 1-32 | DOI | MR | Zbl

[GN00] Gupta, Arjun K.; Nagar, Daya K. Matrix variate distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 104, Chapman & Hall/CRC, 2000 | MR | Zbl

[GR14] Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products, Academic Press Inc., 2014 | Zbl

[Hay69] Hayakawa, Takesi On the distribution of the latent roots of a positive definite random symmetric matrix. I, Ann. Inst. Stat. Math., Volume 21 (1969), pp. 1-21 | DOI | MR | Zbl

[Jam61] James, Alan T. Zonal polynomials of the real positive definite symmetric matrices, Ann. Math., Volume 74 (1961), pp. 456-469 | DOI | MR | Zbl

[KKW13] Krishnapur, Manjunath; Kurlberg, Pär; Wigman, Igor Nodal length fluctuations for arithmetic random waves, Ann. Math., Volume 177 (2013) no. 2, pp. 699-737 | DOI | MR | Zbl

[Koc96] Kochneff, Elizabeth Rotational symmetry of the Hermite projection operators, Proc. Am. Math. Soc., Volume 124 (1996) no. 5, pp. 1539-1547 | DOI | MR | Zbl

[MP11] Marinucci, Domenico; Peccati, Giovanni Random fields on the sphere, London Mathematical Society Lecture Note Series, 389, Cambridge University Press, 2011 (Representation, limit theorems and cosmological applications) | Zbl | DOI | MR

[MPH95] Mathai, Arak M.; Provost, Serge B.; Hayakawa, Takesi Bilinear forms and zonal polynomials, Lecture Notes in Statistics, 102, Springer, 1995 | DOI | MR | Zbl

[MPRW16] Marinucci, Domenico; Peccati, Giovanni; Rossi, Maurizia; Wigman, Igor Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal., Volume 26 (2016) no. 3, pp. 926-960 | DOI | MR | Zbl

[MRW20] Marinucci, Domenico; Rossi, Maurizia; Wigman, Igor The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 56 (2020) no. 1, pp. 374-390 | DOI | MR | Zbl

[Mui82] Muirhead, Robb J. Aspects of multivariate statistical theory, John Wiley & Sons, 1982 (Wiley Series in Probability and Mathematical Statistics) | MR | Zbl | DOI

[Not21] Notarnicola, Massimo Fluctuations of nodal sets on the 3-torus and general cancellation phenomena, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 18 (2021), pp. 1127-1194 | Zbl | MR

[NP12] Nourdin, Ivan; Peccati, Giovanni Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, 192, Cambridge University Press, 2012 (From Stein’s method to universality) | DOI | MR | Zbl

[NPR19] Nourdin, Ivan; Peccati, Giovanni; Rossi, Maurizia Nodal statistics of planar random waves, Commun. Math. Phys., Volume 369 (2019) no. 1, pp. 99-151 | DOI | MR | Zbl

[Nua95] Nualart, David The Malliavin calculus and related topics, Probability and Its Applications, Springer, 1995 | DOI | MR | Zbl

[ORW08] Oravecz, Ferenc; Rudnick, Zeév; Wigman, Igor The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 299-335 | Zbl | DOI | MR | Numdam

[PR18] Peccati, Giovanni; Rossi, Maurizia Quantitative limit theorems for local functionals of arithmetic random waves, Computation and combinatorics in dynamics, stochastics and control (Abel Symposia), Volume 13, Springer, 2018, pp. 659-689 | MR | Zbl | DOI

[PV20] Peccati, Giovanni; Vidotto, Anna Gaussian random measures generated by Berry’s nodal sets, J. Stat. Phys., Volume 178 (2020) no. 4, pp. 996-1027 | DOI | MR | Zbl

[RW08] Rudnick, Zeév; Wigman, Igor On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré, Volume 9 (2008) no. 1, pp. 109-130 | DOI | MR | Zbl

[SW08] Schneider, Rolf; Weil, Wolfgang Stochastic and integral geometry, Probability and Its Applications, Springer, 2008 | DOI | MR | Zbl

[Tha93] Thangavelu, Sundaram Hermite expansions on R n for radial functions, Proc. Am. Math. Soc., Volume 118 (1993) no. 4, pp. 1097-1102 | DOI | MR | Zbl

[Vit91] Vitale, Richard A. Expected absolute random determinants and zonoids, Ann. Appl. Probab., Volume 1 (1991) no. 2, pp. 293-300 | MR | Zbl

[Wig10] Wigman, Igor Fluctuations of the nodal length of random spherical harmonics, Commun. Math. Phys., Volume 298 (2010) no. 3, pp. 787-831 | DOI | MR | Zbl

[ZK12] Zaporozhets, Dmitry N.; Kabluchko, Zakhar Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields, Zap. Nauchn. Semin. (POMI), Volume 408 (2012), pp. 187-196 | DOI | MR | Zbl

Cité par Sources :