[Temps de mélange de la dynamique de Glauber pour les pavages aléatoires]
The broad motivation of this work is a rigorous understanding of reversible, local Markov dynamics of interfaces, and in particular their speed of convergence to equilibrium, measured via the mixing time . In the -dimensional setting, , this is to a large extent mathematically unexplored territory, especially for discrete interfaces. On the other hand, on the basis of a mean-curvature motion heuristics [Hen97, Spo93] and simulations (see [Des02] and the references in [Hen97, Wil04]), one expects convergence to equilibrium to occur on time-scales of order in any dimension, with the lattice mesh.
We study the single-flip Glauber dynamics for lozenge tilings of a finite domain of the plane, viewed as -dimensional surfaces. The stationary measure is the uniform measure on admissible tilings. At equilibrium, by the limit shape theorem [CKP01], the height function concentrates as around a deterministic profile , the unique minimizer of a surface tension functional. Despite some partial mathematical results [LT15a, LT15b, Wil04], the conjecture had been proven, so far, only in the situation where is an affine function [CMT12]. In this work, we prove the conjecture under the sole assumption that the limit shape contains no frozen regions (facets).
La motivation de ce travail est la compréhension mathématique des dynamiques Markoviennes réversibles d’interfaces aléatoires, et de leur vitesse de convergence vers l’équilibre (temps de mélange ). En dimension , , il s’agit de questions très ouvertes, en particulier pour des interfaces discrètes mais, sur la base d’arguments heuristiques et de simulations numériques, on conjecture que est d’ordre en toute dimension, si est le pas du réseau.
Nous étudions une dynamique de Glauber pour les pavages par losanges d’un domaine du plan, vues comme des surface -dimensionnelles. La mesure stationnaire est la mesure uniforme sur les pavages admissibles. À l’équilibre, la fonction de hauteur se concentre (pour ) autour d’un profil déterministe , l’unique minimiseur d’une fonctionnelle de tension de surface. Malgré certains résultats mathématiques partiels [LT15a, LT15b, Wil04], jusqu’ici la conjecture n’avait été démontrée que dans le cas où est une fonction affine [CMT12]. Dans ce travail, nous prouvons la conjecture sous la seule hypothèse que la forme limite ne contienne pas de régions gelées.
Révisé le :
Accepté le :
Publié le :
Keywords: Mixing time, lozenge tilings, random interfaces, dimer model
Laslier, Benoît 1 ; Toninelli, Fabio 2
CC-BY 4.0
@article{AHL_2023__6__907_0,
author = {Laslier, Beno{\^\i}t and Toninelli, Fabio},
title = {The mixing time of the lozenge tiling {Glauber} dynamics},
journal = {Annales Henri Lebesgue},
pages = {907--940},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.181},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.181/}
}
TY - JOUR AU - Laslier, Benoît AU - Toninelli, Fabio TI - The mixing time of the lozenge tiling Glauber dynamics JO - Annales Henri Lebesgue PY - 2023 SP - 907 EP - 940 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.181/ DO - 10.5802/ahl.181 LA - en ID - AHL_2023__6__907_0 ER -
Laslier, Benoît; Toninelli, Fabio. The mixing time of the lozenge tiling Glauber dynamics. Annales Henri Lebesgue, Tome 6 (2023), pp. 907-940. doi: 10.5802/ahl.181
[ADPZ20] Dimer models and conformal structures (2020) (https://arxiv.org/abs/2004.02599)
[Agg19] Universality of tiling local statistics (2019) (https://arxiv.org/abs/1907.09991, to appear in Annals of Mathematics)
[CKP01] A variational principle for domino tilings, J. Am. Math. Soc., Volume 14 (2001), pp. 297-346 | Zbl | MR | DOI
[CLL22] Spectral gap and cutoff phenomenon for the Gibbs sampler of interfaces with convex potential, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 58 (2022) no. 2, pp. 794-826 | Zbl | MR
[CLP98] The Shape of a Typical Boxed Plane Partition, New York J. Math., Volume 4 (1998), pp. 137-165 | Zbl | MR
[CMT11] Convergence to equilibrium of biased plane partitions, Random Struct. Algorithms, Volume 39 (2011), pp. 83-114 | Zbl | MR | DOI
[CMT12] Mixing times of monotone surfaces and SOS interfaces: a mean curvature approach, Commun. Math. Phys., Volume 311 (2012), pp. 157-189 | Zbl | MR | DOI
[Des02] Flip dynamics in octagonal rhombus tiling sets, Phys. Rev. Lett., Volume 88 (2002) no. 3, 030601 | DOI
[GG23] Cutoff for the Glauber dynamics of the lattice free field, Probab. Math. Phys., Volume 4 (2023), pp. 433-475 | Zbl | MR | DOI
[Gia83] Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105, Princeton University Press, 1983 | Zbl
[GPR09] Sampling biased lattice configurations using exponential metrics, Proc. of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM Press (2009), pp. 76-85 | Zbl
[Hen97] Relaxation time for a dimer covering with height representation, J. Stat. Phys., Volume 89 (1997) no. 3-4, pp. 483-507 | Zbl | MR | DOI
[Ken09] Lectures on dimers (2009) (https://arxiv.org/abs/0910.3129)
[KL98] Scaling limits of interacting particle systems, Grundlehren der Mathematischen Wissenschaften, 320, Springer, 1998 | Zbl
[KO07] Limit shapes and the complex Burgers equation, Acta Math., Volume 199 (2007) no. 2, pp. 263-302 | Zbl | MR | DOI
[Kry08] Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, 96, American Mathematical Society, 2008 | DOI | Zbl
[Lac16] Mixing time and cutoff for the adjaent transposition shuffle and the simple exclusion, Ann. Probab., Volume 44 (2016) no. 2, pp. 1426-1487 | Zbl
[Las21] Central limit theorem for lozenge tilings with curved limit shape (2021) (https://arxiv.org/abs/2102.05544)
[LL19] Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling, Ann. Probab., Volume 47 (2019) no. 3, pp. 1541-1586 | MR | Zbl
[LP17] Markov chains and mixing times, American Mathematical Society, 2017 | DOI | Zbl
[LRS01] Markov Chain Algorithms for Planar Lattice Structures, SIAM J. Comput., Volume 31 (2001), pp. 167-192 | MR | DOI | Zbl
[LT15a] How quickly can we sample a uniform domino tiling of the square?, Probab. Theory Relat. Fields, Volume 161 (2015) no. 3-4, pp. 509-559 | DOI | Zbl
[LT15b] Lozenge tilings, Glauber dynamics and macroscopic shape, Commun. Math. Phys., Volume 338 (2015) no. 3, pp. 1287-1326 | MR | DOI | Zbl
[Spo93] Interface motion in models with stochastic dynamics, J. Stat. Phys., Volume 71 (1993), pp. 1081-1132 | Zbl | MR | DOI
[Wil04] Mixing times of Lozenge tiling and card shuffling Markov chains, Ann. Appl. Probab., Volume 14 (2004), pp. 274-325 | Zbl | MR
Cité par Sources :





