Bounded weak solutions to a class of degenerate cross-diffusion systems
[Solutions faibles bornées pour une classe de systèmes à diffusion croisée dégénérés]
Annales Henri Lebesgue, Tome 6 (2023), pp. 847-874

Bounded weak solutions are constructed for a degenerate parabolic system with a full diffusion matrix, which is a generalized version of the thin film Muskat system. Boundedness is achieved with the help of a sequence ( n ) n2 of Liapunov functionals such that  n is equivalent to the L n -norm for each n2 and n 1/n controls the L -norm in the limit n. Weak solutions are built by a compactness approach, special care being needed in the construction of the approximation in order to preserve the availability of the above-mentioned Liapunov functionals.

Des solutions faibles bornées sont construites pour un système parabolique dégénéré avec une matrice de diffusion pleine, qui est une version généralisée d’une approximation de type «  film mince » du système de Muskat. Le caractère borné des solutions est obtenu à l’aide d’une suite ( n ) n2 de fonctionnelles de Liapunov avec les propriétés suivantes  : n est équivalente à la norme L n pour chaque n2 et  n 1/n contrôle la norme L dans la limite n. Les solutions faibles sont construites par une méthode de compacité, la construction des approximations requérant une attention particulière afin d’être compatibles avec les fonctionnelles de Liapunov mentionnées ci-dessus.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.179
Classification : 35K65, 35K51, 37L45, 35B65
Keywords: Degenerate parabolic system, cross-diffusion, boundedness, Liapunov functionals, global existence

Laurençot, Philippe 1 ; Matioc, Bogdan-Vasile 2

1 Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS F–31062 Toulouse Cedex 9, France
2 Fakultät für Mathematik, Universität Regensburg D–93040 Regensburg, Deutschland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__847_0,
     author = {Lauren\c{c}ot, Philippe and Matioc, Bogdan-Vasile},
     title = {Bounded weak solutions to a class of degenerate cross-diffusion systems},
     journal = {Annales Henri Lebesgue},
     pages = {847--874},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.179},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.179/}
}
TY  - JOUR
AU  - Laurençot, Philippe
AU  - Matioc, Bogdan-Vasile
TI  - Bounded weak solutions to a class of degenerate cross-diffusion systems
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 847
EP  - 874
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.179/
DO  - 10.5802/ahl.179
LA  - en
ID  - AHL_2023__6__847_0
ER  - 
%0 Journal Article
%A Laurençot, Philippe
%A Matioc, Bogdan-Vasile
%T Bounded weak solutions to a class of degenerate cross-diffusion systems
%J Annales Henri Lebesgue
%D 2023
%P 847-874
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.179/
%R 10.5802/ahl.179
%G en
%F AHL_2023__6__847_0
Laurençot, Philippe; Matioc, Bogdan-Vasile. Bounded weak solutions to a class of degenerate cross-diffusion systems. Annales Henri Lebesgue, Tome 6 (2023), pp. 847-874. doi: 10.5802/ahl.179

[ACCL19] Aït Hammou Oulhaj, Ahmed; Cancès, Clément; Chainais-Hillairet, Claire; Laurençot, Philippe Large time behavior of a two phase extension of the porous medium equation, Interfaces Free Bound., Volume 21 (2019) no. 2, pp. 199-229 | MR | DOI | Zbl

[AIJM18] Alkhayal, Jana; Issa, Samar; Jazar, Mustapha; Monneau, Régis Existence result for degenerate cross-diffusion system with application to seawater intrusion, ESAIM, Control Optim. Calc. Var., Volume 24 (2018) no. 4, pp. 1735-1758 | Zbl | MR | DOI

[BDFPS10] Burger, Martin; Di Francesco, Marco; Pietschmann, Jan-Frederik; Schlake, Bärbel Nonlinear cross-diffusion with size exclusion, SIAM J. Math. Anal., Volume 42 (2010) no. 6, pp. 2842-2871 | MR | Zbl | DOI

[BGB19] Bruell, Gabriele; Granero-Belinchón, Rafael On the thin film Muskat and the thin film Stokes equations, J. Math. Fluid Mech., Volume 21 (2019) no. 2, 33 | MR | Zbl

[BGHP85] Bertsch, Michiel; Gurtin, Morton E.; Hilhorst, Danielle; Peletier, Lambertus A. On interacting populations that disperse to avoid crowding: preservation of segregation, J. Math. Biol., Volume 23 (1985) no. 1, pp. 1-13 | Zbl | MR | DOI

[DGJ97] Degond, Pierre; Génieys, Stéphane; Jüngel, Ansgar Symmetrization and entropy inequality for general diffusion equations, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 9, pp. 963-968 | DOI | Zbl | MR

[DJ12] Dreher, Michael; Jüngel, Ansgar Compact families of piecewise constant functions in L p (0,T;B), Nonlinear Anal., Theory Methods Appl., Volume 75 (2012) no. 6, pp. 3072-3077 | MR | Zbl | DOI

[ELM11] Escher, Joachim; Laurençot, Philippe; Matioc, Bogdan-Vasile Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 4, pp. 583-598 | MR | Numdam | DOI | Zbl

[EMM12] Escher, Joachim; Matioc, Anca-Voichita; Matioc, Bogdan-Vasile Modelling and analysis of the Muskat problem for thin fluid layers, J. Math. Fluid Mech., Volume 14 (2012) no. 2, pp. 267-277 | MR | DOI | Zbl

[GS14] Galiano, Gonzalo; Selgas, Virginia On a cross-diffusion segregation problem arising from a model of interacting particles, Nonlinear Anal., Real World Appl., Volume 18 (2014), pp. 34-49 | Zbl | MR | DOI

[GT01] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | DOI | Zbl

[JM06] Jüngel, Ansgar; Matthes, Daniel An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, Volume 19 (2006) no. 3, pp. 633-659 | Zbl | MR | DOI

[Jün16] Jüngel, Ansgar Entropy methods for diffusive partial differential equations, SpringerBriefs in Mathematics, Springer, 2016 | Zbl | MR | DOI

[LM13] Laurençot, Philippe; Matioc, Bogdan-Vasile A gradient flow approach to a thin film approximation of the Muskat problem, Calc. Var. Partial Differ. Equ., Volume 47 (2013) no. 1-2, pp. 319-341 | Zbl | MR | DOI

[LM17] Laurençot, Philippe; Matioc, Bogdan-Vasile Finite speed of propagation and waiting time for a thin-film Muskat problem, Proc. R. Soc. Edinb., Sect. A, Math., Volume 147 (2017) no. 4, pp. 813-830 | MR | Zbl | DOI

[LM22] Laurençot, Philippe; Matioc, Bogdan-Vasile Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals, Trans. Am. Math. Soc., Volume 375 (2022) no. 8, pp. 5963-5986 | Zbl | MR | DOI

[Mie23] Mielke, Alexander On two coupled degenerate parabolic equations motivated by thermodynamics, J. Nonlinear Sci., Volume 33 (2023) no. 3, 42 | Zbl | MR | DOI

Cité par Sources :