[Cohomologie symplectique des singularités cDVs]
We compute symplectic cohomology for Milnor fibres of certain compound Du Val singularities that admit small resolution by using homological mirror symmetry. Our computations suggest a new conjecture that the existence of a small resolution has strong implications for the symplectic cohomology and conversely. We also use our computations to give a contact invariant of the link of the singularities and thereby distinguish many contact structures on connected sums of .
Nous calculons la cohomologie symplectique des fibres de Milnor de certaines singularités Du Val composites qui admettent une petite résolution en utilisant la symétrie miroir homologique. Nos calculs suggèrent une nouvelle conjecture comme quoi l’existence d’une petite résolution a de fortes implications pour la cohomologie symplectique et inversement. Nous utilisons également nos calculs pour donner un invariant de contact du link des singularités et ainsi distinguer de nombreuses structures de contact sur des sommes connexes de .
Révisé le :
Accepté le :
Publié le :
Keywords: Symplectic cohomology, compound Du Val, terminal, singularities, contact geometry, links, homological mirror symmetry
Evans, Jonathan David 1 ; Lekili, Yankı 2
CC-BY 4.0
@article{AHL_2023__6__727_0,
author = {Evans, Jonathan David and Lekili, Yank{\i}},
title = {Symplectic cohomology of compound {Du} {Val} singularities},
journal = {Annales Henri Lebesgue},
pages = {727--765},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.177},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.177/}
}
TY - JOUR AU - Evans, Jonathan David AU - Lekili, Yankı TI - Symplectic cohomology of compound Du Val singularities JO - Annales Henri Lebesgue PY - 2023 SP - 727 EP - 765 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.177/ DO - 10.5802/ahl.177 LA - en ID - AHL_2023__6__727_0 ER -
Evans, Jonathan David; Lekili, Yankı. Symplectic cohomology of compound Du Val singularities. Annales Henri Lebesgue, Tome 6 (2023), pp. 727-765. doi: 10.5802/ahl.177
[Abo15] Symplectic cohomology and Viterbo’s theorem, Free loop spaces in geometry and topology (IRMA Lectures in Mathematics and Theoretical Physics), Volume 24, European Mathematical Society, 2015, pp. 271-485 | MR | Zbl
[AGV12] Singularities of differentiable maps. Volume 1: Classification of critical points, caustics and wave fronts, Modern Birkhäuser Classics, Birkhäuser, 2012 (translated from the Russian by Ian Porteous, based on a previous translation by Mark Reynolds, reprint of the 1985 edition) | MR | Zbl
[BEE12] Effect of Legendrian surgery, Geom. Topol., Volume 16 (2012) no. 1, pp. 301-389 (With an Appendix by Sheel Ganatra and Maksim Maydanskiy) | DOI | MR | Zbl
[BFK14] A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 120 (2014), pp. 1-111 | MR | Zbl | Numdam | DOI
[BH92] A generalized construction of mirror manifolds, Essays on mirror manifolds, International Press, 1992, pp. 388-407 | MR | Zbl
[BO09] An exact sequence for contact- and symplectic homology, Invent. Math., Volume 175 (2009) no. 3, pp. 611-680 | DOI | MR | Zbl
[Bou02] A Morse–Bott approach to contact homology, ProQuest LLC, 2002, 123 pages Thesis (Ph.D.)–Stanford University, USA | MR
[Bri66] Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., Volume 2 (1966), pp. 1-14 | DOI | MR | Zbl
[Bri68] Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann., Volume 178 (1968), pp. 255-270 | DOI | MR | Zbl
[CDGG17] Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors (2017) https://arxiv.org/abs/1712.09126 (to appear in Annales scientifiques de l’École normale supérieure)
[CFH95] Symplectic homology. II. A general construction, Math. Z., Volume 218 (1995) no. 1, pp. 103-122 | DOI | MR | Zbl
[CO18] Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol., Volume 18 (2018) no. 4, pp. 1953-2130 (Appendix written jointly with Peter Albers) | DOI | MR | Zbl
[EL17] Duality between Lagrangian and Legendrian invariants (2017) https://arxiv.org/abs/1701.01284 (to appear in Geometry & Topology)
[FH94] Symplectic homology. I. Open sets in , Math. Z., Volume 215 (1994) no. 1, pp. 37-88 | Zbl | DOI | MR
[Fri86] Simultaneous resolution of threefold double points, Math. Ann., Volume 274 (1986) no. 4, pp. 671-689 | DOI | MR | Zbl
[FU09] Homological mirror symmetry for Brieskorn–Pham singularities, Proceeding of the 66 Japan Geometry Symposium, Saga University (2009), pp. 98-107
[FU11] Homological mirror symmetry for Brieskorn–Pham singularities, Sel. Math., New Ser., Volume 17 (2011) no. 2, pp. 435-452 | DOI | MR | Zbl
[FU13] Homological mirror symmetry for singularities of type D, Math. Z., Volume 273 (2013) no. 3-4, pp. 633-652 | MR | Zbl | DOI
[Gam20] Mirror symmetry for Berglund–Hübsch Milnor fibers (2020) (https://arxiv.org/abs/2010.15570)
[Gan13] Symplectic Cohomology and Duality for the Wrapped Fukaya Category (2013) (https://arxiv.org/abs/1304.7312)
[Hab21] Homological mirror symmetry for nodal stacky curves (2021) (https://arxiv.org/abs/2101.12178)
[Hof90] Symplectic capacities, Geometry of low-dimensional manifolds, 2 (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 151, Cambridge University Press, 1990, pp. 15-34 | Zbl | MR
[HS20] Homological Berglund–Hübsch mirror symmetry for curve singularities, J. Symplectic Geom., Volume 18 (2020) no. 6, pp. 1515-1574 | Zbl | MR | DOI
[Kat91] Small resolutions of Gorenstein threefold singularities, Algebraic geometry: Sundance 1988 (Contemporary Mathematics), Volume 116, American Mathematical Society, 1991, pp. 61-70 | DOI | MR | Zbl
[Kel03] Derived invariance of higher structures on the Hochschild complex (2003) (preprint, https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf)
[Kel11] Deformed Calabi–Yau completions, J. Reine Angew. Math., Volume 654 (2011), pp. 125-180 (With an appendix by Michel Van den Bergh) | DOI | MR | Zbl
[Koe08] Contact homology of Brieskorn manifolds, Forum Math., Volume 20 (2008) no. 2, pp. 317-339 | DOI | MR | Zbl
[Lau81] On as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) (Annals of Mathematics Studies), Volume 100, Princeton University Press (1981), pp. 261-275 | MR | Zbl
[LP16] Floer cohomology of -equivariant Lagrangian branes, Compos. Math., Volume 152 (2016) no. 5, pp. 1071-1110 | Zbl | DOI | MR
[LU18] Homological mirror symmetry for Milnor fibers via moduli of -structures (2018) https://arxiv.org/abs/1806.04345 (to appear in Journal of Topology)
[LU21] Homological mirror symmetry for Milnor fibers of simple singularities, Algebr. Geom., Volume 8 (2021) no. 5, pp. 562-586 | DOI | MR | Zbl
[Mar96] Minimal discrepancy for a terminal cDV singularity is , J. Math. Sci., Tokyo, Volume 3 (1996) no. 2, pp. 445-456 | MR | Zbl
[McL16] Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math., Volume 204 (2016) no. 2, pp. 505-594 | DOI | MR | Zbl
[Mil68] Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press; University of Tokyo Press, 1968 | MR | Zbl
[Mor85] On -dimensional terminal singularities, Nagoya Math. J., Volume 98 (1985), pp. 43-66 | DOI | MR | Zbl
[Mum61] The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 9, pp. 5-22 | MR | Zbl | Numdam | DOI
[Orl11] Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., Volume 226 (2011) no. 1, pp. 206-217 | MR | DOI | Zbl
[Pin83] Factorization of birational maps in dimension , Singularities, Part 2 (Arcata, Calif., 1981) (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 343-371 | MR | Zbl
[PV21] On homological mirror symmetry for chain type polynomials (2021) (https://arxiv.org/abs/2105.03808)
[Rei83] Minimal models of canonical -folds, Algebraic varieties and analytic varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 131-180 | DOI | MR | Zbl
[Sch95] Cohomology operations from -cobordisms in Floer homology, Ph. D. Thesis, ETH Zürich, Switzerland (1995), 223 pages
[Sei08] A biased view of symplectic cohomology, Current developments in mathematics, 2006, International Press, 2008, pp. 211-253 | MR | Zbl
[Sei10] Suspending Lefschetz fibrations, with an application to local mirror symmetry, Commun. Math. Phys., Volume 297 (2010) no. 2, pp. 515-528 | DOI | MR | Zbl
[Sei14] Disjoinable Lagrangian spheres and dilations, Invent. Math., Volume 197 (2014) no. 2, pp. 299-359 | DOI | MR | Zbl
[Tju70] Resolution of singularities of flat deformations of double rational points, Funkts. Anal. Prilozh., Volume 4 (1970) no. 1, pp. 77-83 | MR
[Ueb16] Symplectic homology of some Brieskorn manifolds, Math. Z., Volume 283 (2016) no. 1-2, pp. 243-274 | Zbl | MR | DOI
[Ueb19] Periodic Reeb flows and products in symplectic homology, J. Symplectic Geom., Volume 17 (2019) no. 4, pp. 1201-1250 | Zbl | MR | DOI
[Var80] Contact structures and isolated singularities, Vestn. Mosk. Univ., Ser. I (1980) no. 2, pp. 18-21 | Zbl | MR
[Vit99] Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 985-1033 | Zbl | MR | DOI
[Wal67] Classification problems in differential topology. VI. Classification of -connected -manifolds, Topology, Volume 6 (1967), pp. 273-296 | Zbl | MR | DOI
Cité par Sources :





