Incidence bounds in positive characteristic via valuations and distality
[Bornes d’incidence en caractéristique positive par les valuations et la distalité]
Annales Henri Lebesgue, Tome 6 (2023), pp. 627-641

We prove distality of quantifier-free relations on valued fields with finite residue field. By a result of Chernikov–Galvin–Starchenko, this yields Szemerédi–Trotter-like incidence bounds for function fields over finite fields. We deduce a version of the Elekes–Szabó theorem for such fields.

Nous démontrons la distalité des relations sans quantificateur sur les corps valués de corps résiduel fini. D’après un résultat de Chernikov–Galvin–Starchenko, cela implique des bornes d’incidence de type Szemerédi–Trotter pour les corps de fonctions sur les corps finis. Nous en déduisons une version du théorème d’Elekes–Szabó pour de tels corps.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.174
Classification : 03C98, 03C45, 05D99
Keywords: Szemerédi-Trotter, incidence bounds, distality, Elekes-Szabó

Bays, Martin 1 ; Martin, Jean-François 2

1 Mathematisches Institut und Institut für Mathematische Logik und Grundlagenforschung, Fachbereich Mathematik und Informatik, Universität Münster, Einsteinstrasse 62, 48149 Muenster, Germany
2 Université Paris-Saclay, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__627_0,
     author = {Bays, Martin and Martin, Jean-Fran\c{c}ois},
     title = {Incidence bounds in positive characteristic via valuations and distality},
     journal = {Annales Henri Lebesgue},
     pages = {627--641},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.174},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.174/}
}
TY  - JOUR
AU  - Bays, Martin
AU  - Martin, Jean-François
TI  - Incidence bounds in positive characteristic via valuations and distality
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 627
EP  - 641
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.174/
DO  - 10.5802/ahl.174
LA  - en
ID  - AHL_2023__6__627_0
ER  - 
%0 Journal Article
%A Bays, Martin
%A Martin, Jean-François
%T Incidence bounds in positive characteristic via valuations and distality
%J Annales Henri Lebesgue
%D 2023
%P 627-641
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.174/
%R 10.5802/ahl.174
%G en
%F AHL_2023__6__627_0
Bays, Martin; Martin, Jean-François. Incidence bounds in positive characteristic via valuations and distality. Annales Henri Lebesgue, Tome 6 (2023), pp. 627-641. doi: 10.5802/ahl.174

[ACGZ22] Aschenbrenner, Matthias; Chernikov, Artem; Gehret, Allen; Ziegler, Martin Distality in valued fields and related structures, Trans. Am. Math. Soc., Volume 375 (2022) no. 7, pp. 4641-4710 | DOI | MR | Zbl

[BB21] Bays, Martin; Breuillard, Emmanuel Projective geometries arising from Elekes–Szabo problems, Ann. Sci. Éc. Norm. Supér., Volume 54 (2021) no. 3, pp. 627-681 | DOI | Zbl | MR

[BKT04] Bourgain, J.; Katz, N.; Tao, Terence A sum-product estimate in finite fields, and applications, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 27-57 | MR | Zbl | DOI

[CGS20] Chernikov, Artem; Galvin, David; Starchenko, Sergei Cutting lemma and Zarankiewicz’s problem in distal structures, Sel. Math., New Ser., Volume 26 (2020) no. 2, 25 | Zbl | MR | DOI

[CPS] Chernikov, Artem; Peterzil, Ya’acov; Starchenko, Sergei Model-theoretic Elekes–Szabó for stable and o-minimal hypergraphs (https://arxiv.org/abs/2104.02235v1)

[CS15] Chernikov, Artem; Simon, Pierre Externally definable sets and dependent pairs II, Trans. Am. Math. Soc., Volume 367 (2015) no. 7, pp. 5217-5235 | Zbl | MR | DOI

[CS21] Chernikov, Artem; Starchenko, Sergei Model-theoretic Elekes–Szabó in the strongly minimal case, J. Math. Log., Volume 21 (2021) no. 2 | Zbl | MR | DOI

[EH91] Evans, David M.; Hrushovski, Ehud Projective planes in algebraically closed fields, Proc. Lond. Math. Soc., Volume 62 (1991) no. 1, pp. 1-24 | Zbl | MR | DOI

[EP05] Engler, Antonio J.; Prestel, Alexander Valued fields, Springer Monographs in Mathematics, Springer, 2005 | Zbl | MR

[ES12] Elekes, György; Szabó, Endre How to find groups? (and how to use them in Erdös geometry?), Combinatorica, Volume 32 (2012) no. 5, pp. 537-571 | DOI | Zbl | MR

[FPS + 17] Fox, Jacob; Pach, János; Sheffer, Adam; Suk, Andrew; Zahl, Joshua A semi-algebraic version of Zarankiewicz’s problem, J. Eur. Math. Soc., Volume 19 (2017) no. 6, pp. 1785-1810 | Zbl | MR | DOI

[Hol95] Holly, Jan E. Canonical forms for definable subsets of algebraically closed and real closed valued fields, J. Symb. Log., Volume 60 (1995) no. 3, pp. 843-860 | Zbl | MR | DOI

[Hru13] Hrushovski, Ehud On pseudo-finite dimensions, Notre Dame J. Formal Logic, Volume 54 (2013) no. 3-4, pp. 463-495 | Zbl | MR | DOI

[KSW11] Kaplan, Itay; Scanlon, Thomas; Wagner, Frank O Artin–Schreier extensions in NIP and simple fields, Isr. J. Math., Volume 185 (2011) no. 1, pp. 141-153 | MR | DOI | Zbl

[Lan02] Lang, Serge Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI | Zbl | MR

[SdZ17] Stevens, Sophie; de Zeeuw, Frank An improved point-line incidence bound over arbitrary fields, Bull. Lond. Math. Soc., Volume 49 (2017) no. 5, pp. 842-858 | Zbl | MR | DOI

[Sim20] Simon, Pierre Type decomposition in NIP theories, J. Eur. Math. Soc., Volume 22 (2020) no. 2, pp. 455-476 | Zbl | MR | DOI

[TV06] Tao, Terence; Vu, Van Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006 | Zbl | MR | DOI

[TZ12] Tent, Katrin; Ziegler, Martin A course in model theory, Lecture Notes in Logic, 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, 2012 | Zbl | MR | DOI

[Wei84] Weispfenning, Volker Quantifier elimination and decision procedures for valued fields, Models and sets (Aachen, 1983) (Lecture Notes in Mathematics), Volume 1103, Springer, 1984, pp. 419-472 | Zbl | MR | DOI

Cité par Sources :