[Bornes d’incidence en caractéristique positive par les valuations et la distalité]
We prove distality of quantifier-free relations on valued fields with finite residue field. By a result of Chernikov–Galvin–Starchenko, this yields Szemerédi–Trotter-like incidence bounds for function fields over finite fields. We deduce a version of the Elekes–Szabó theorem for such fields.
Nous démontrons la distalité des relations sans quantificateur sur les corps valués de corps résiduel fini. D’après un résultat de Chernikov–Galvin–Starchenko, cela implique des bornes d’incidence de type Szemerédi–Trotter pour les corps de fonctions sur les corps finis. Nous en déduisons une version du théorème d’Elekes–Szabó pour de tels corps.
Accepté le :
Publié le :
Keywords: Szemerédi-Trotter, incidence bounds, distality, Elekes-Szabó
Bays, Martin 1 ; Martin, Jean-François 2
CC-BY 4.0
@article{AHL_2023__6__627_0,
author = {Bays, Martin and Martin, Jean-Fran\c{c}ois},
title = {Incidence bounds in positive characteristic via valuations and distality},
journal = {Annales Henri Lebesgue},
pages = {627--641},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.174},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.174/}
}
TY - JOUR AU - Bays, Martin AU - Martin, Jean-François TI - Incidence bounds in positive characteristic via valuations and distality JO - Annales Henri Lebesgue PY - 2023 SP - 627 EP - 641 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.174/ DO - 10.5802/ahl.174 LA - en ID - AHL_2023__6__627_0 ER -
Bays, Martin; Martin, Jean-François. Incidence bounds in positive characteristic via valuations and distality. Annales Henri Lebesgue, Tome 6 (2023), pp. 627-641. doi: 10.5802/ahl.174
[ACGZ22] Distality in valued fields and related structures, Trans. Am. Math. Soc., Volume 375 (2022) no. 7, pp. 4641-4710 | DOI | MR | Zbl
[BB21] Projective geometries arising from Elekes–Szabo problems, Ann. Sci. Éc. Norm. Supér., Volume 54 (2021) no. 3, pp. 627-681 | DOI | Zbl | MR
[BKT04] A sum-product estimate in finite fields, and applications, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 27-57 | MR | Zbl | DOI
[CGS20] Cutting lemma and Zarankiewicz’s problem in distal structures, Sel. Math., New Ser., Volume 26 (2020) no. 2, 25 | Zbl | MR | DOI
[CPS] Model-theoretic Elekes–Szabó for stable and o-minimal hypergraphs (https://arxiv.org/abs/2104.02235v1)
[CS15] Externally definable sets and dependent pairs II, Trans. Am. Math. Soc., Volume 367 (2015) no. 7, pp. 5217-5235 | Zbl | MR | DOI
[CS21] Model-theoretic Elekes–Szabó in the strongly minimal case, J. Math. Log., Volume 21 (2021) no. 2 | Zbl | MR | DOI
[EH91] Projective planes in algebraically closed fields, Proc. Lond. Math. Soc., Volume 62 (1991) no. 1, pp. 1-24 | Zbl | MR | DOI
[EP05] Valued fields, Springer Monographs in Mathematics, Springer, 2005 | Zbl | MR
[ES12] How to find groups? (and how to use them in Erdös geometry?), Combinatorica, Volume 32 (2012) no. 5, pp. 537-571 | DOI | Zbl | MR
[FPS + 17] A semi-algebraic version of Zarankiewicz’s problem, J. Eur. Math. Soc., Volume 19 (2017) no. 6, pp. 1785-1810 | Zbl | MR | DOI
[Hol95] Canonical forms for definable subsets of algebraically closed and real closed valued fields, J. Symb. Log., Volume 60 (1995) no. 3, pp. 843-860 | Zbl | MR | DOI
[Hru13] On pseudo-finite dimensions, Notre Dame J. Formal Logic, Volume 54 (2013) no. 3-4, pp. 463-495 | Zbl | MR | DOI
[KSW11] Artin–Schreier extensions in NIP and simple fields, Isr. J. Math., Volume 185 (2011) no. 1, pp. 141-153 | MR | DOI | Zbl
[Lan02] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI | Zbl | MR
[SdZ17] An improved point-line incidence bound over arbitrary fields, Bull. Lond. Math. Soc., Volume 49 (2017) no. 5, pp. 842-858 | Zbl | MR | DOI
[Sim20] Type decomposition in NIP theories, J. Eur. Math. Soc., Volume 22 (2020) no. 2, pp. 455-476 | Zbl | MR | DOI
[TV06] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006 | Zbl | MR | DOI
[TZ12] A course in model theory, Lecture Notes in Logic, 40, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, 2012 | Zbl | MR | DOI
[Wei84] Quantifier elimination and decision procedures for valued fields, Models and sets (Aachen, 1983) (Lecture Notes in Mathematics), Volume 1103, Springer, 1984, pp. 419-472 | Zbl | MR | DOI
Cité par Sources :





