[Limite de couplage fort du système de Dirac–Klein–Gordon]
We study the Dirac equation coupled to scalar and vector Klein–Gordon fields in the limit of strong coupling and large masses of the fields. We prove convergence of the solutions to those of a cubic non-linear Dirac equation, given that the initial spinors coincide. This shows that in this parameter regime, which is relevant to the relativistic mean-field theory of nuclei, the retarded interaction is well approximated by an instantaneous, local self-interaction. We generalize this result to a many-body Dirac–Fock equation on the space of Hilbert–Schmidt operators.
Nous étudions une équation de Dirac couplée à des champs de Klein–Gordon scalaires et vectoriels dans la limite de couplages forts et de grandes masses. Nous démontrons la convergence de ses solutions vers celles d’une équation de Dirac non-linéaire, si les spineurs initiaux coïncident. Cela montre que dans ce régime de paramètres, pertinent en théorie de champ moyen relativiste des noyaux, l’interaction retardée est bien approchée par une auto-interaction locale et instantanée. Nous généralisons ensuite ce résultat à une équation de Dirac–Fock à plusieurs corps dans l’espace des opérateurs Hilbert–Schmidt.
Accepté le :
Publié le :
Keywords: Relativistic mean-field, nuclear physics, nonlinear analysis, asymptotic analysis, highly oscillatory equations, nonlinear Dirac equation, Klein-Gordon equation
Lampart, Jonas 1 ; Le Treust, Loïc 2 ; Rota Nodari, Simona 3 ; Sabin, Julien 4
CC-BY 4.0
@article{AHL_2023__6__541_0,
author = {Lampart, Jonas and Le Treust, Lo{\"\i}c and Rota Nodari, Simona and Sabin, Julien},
title = {The {Dirac{\textendash}Klein{\textendash}Gordon} system in the strong coupling limit},
journal = {Annales Henri Lebesgue},
pages = {541--573},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.171},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.171/}
}
TY - JOUR AU - Lampart, Jonas AU - Le Treust, Loïc AU - Rota Nodari, Simona AU - Sabin, Julien TI - The Dirac–Klein–Gordon system in the strong coupling limit JO - Annales Henri Lebesgue PY - 2023 SP - 541 EP - 573 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.171/ DO - 10.5802/ahl.171 LA - en ID - AHL_2023__6__541_0 ER -
%0 Journal Article %A Lampart, Jonas %A Le Treust, Loïc %A Rota Nodari, Simona %A Sabin, Julien %T The Dirac–Klein–Gordon system in the strong coupling limit %J Annales Henri Lebesgue %D 2023 %P 541-573 %V 6 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.171/ %R 10.5802/ahl.171 %G en %F AHL_2023__6__541_0
Lampart, Jonas; Le Treust, Loïc; Rota Nodari, Simona; Sabin, Julien. The Dirac–Klein–Gordon system in the strong coupling limit. Annales Henri Lebesgue, Tome 6 (2023), pp. 541-573. doi: 10.5802/ahl.171
[AA88] Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. Funct. Anal., Volume 79 (1988) no. 1, pp. 183-210 | DOI | Zbl
[BH15] The Cubic Dirac Equation: Small Initial Data in , Commun. Math. Phys., Volume 335 (2015) no. 1, pp. 43-82 | MR | DOI | Zbl
[BH17] On global well-posedness and scattering for the massive Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2445-2467 | MR | DOI | Zbl
[BSSZ20] Effective slow dynamics models for a class of dispersive systems, J. Dyn. Differ. Equations, Volume 32 (2020) no. 4, pp. 1867-1899 | MR | DOI | Zbl
[CH18] On the Majorana condition for nonlinear Dirac systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 6, pp. 1707-1717 | DOI | MR | Zbl
[CI89] From quantum electrodynamics to mean-field theory. I. The Bogoliubov–Dirac–Fock formalism, J. Phys. B: At. Mol. Opt. Phys., Volume 22 (1989) no. 23, pp. 3791-3814 | DOI
[CV86] Existence of localized solutions for a classical nonlinear Dirac field, Commun. Math. Phys., Volume 105 (1986) no. 1, pp. 35-47 | Zbl | MR | DOI
[Dir28a] The quantum theory of the electron, Proc. R. Soc. Lond., Ser. A, Volume 117 (1928) no. 778, pp. 610-624 | Zbl
[Dir28b] The quantum theory of the electron. Part II, Proc. R. Soc. Lond., Ser. A, Volume 118 (1928) no. 779, pp. 351-361 | Zbl
[DO16] Blowup and ill-posedness results for a Dirac equation without gauge invariance, Evol. Equ. Control Theory, Volume 5 (2016) no. 2, pp. 225-234 | Zbl | MR | DOI
[DSS16] From the Klein–Gordon–Zakharov system to the Klein–Gordon equation, Math. Methods Appl. Sci., Volume 39 (2016) no. 18, pp. 5371-5380 | MR | DOI | Zbl
[EV97] A Semilinear Dirac Equation in for , SIAM J. Math. Anal., Volume 28 (1997) no. 2, pp. 338-362 | DOI | Zbl
[GHLS13] Construction of the Pauli–Villars-Regulated Dirac Vacuum in Electromagnetic Fields, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 603-665 | MR | Zbl | DOI
[GSS17] On the dynamics of the mean-field polaron in the high-frequency limit, Lett. Math. Phys., Volume 107 (2017) no. 10, pp. 1809-1821 | MR | DOI | Zbl
[HLS05] Existence of global-in-time solutions to a generalized Dirac–Fock type evolution equation, Lett. Math. Phys., Volume 72 (2005) no. 2, pp. 99-113 | DOI | MR | Zbl
[HLS07] The mean-field approximation in quantum electrodynamics: The no-photon case, Commun. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 546-596 | DOI | MR | Zbl
[HP19] Nonexistence of self-similar blowup for the nonlinear Dirac equations in dimensions, Appl. Math. Lett., Volume 92 (2019), pp. 176-183 | Zbl | MR | DOI
[KP88] Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891-907 | DOI | MR | Zbl
[LS15] The Hartree equation for infinitely many particles I. Well-posedness theory, Commun. Math. Phys., Volume 334 (2015) no. 1, pp. 117-170 | Zbl | MR | DOI
[MNNO05] Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., Volume 219 (2005) no. 1, pp. 1-20 | DOI | MR | Zbl
[MNO03] Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoam., Volume 19 (2003) no. 1, pp. 179-194 | MR | DOI | Zbl
[Naj92] The nonrelativistic limit of the nonlinear Dirac equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 9 (1992) no. 1, pp. 3-12 | DOI | Numdam | MR | Zbl
[Rin96] Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys., Volume 37 (1996), pp. 193-263 | DOI
[Sim05] Trace ideals and their applications, Mathematical Surveys and Monographs, American Mathematical Society, 2005 no. 120 | Zbl
[Sol70] Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, Volume 1 (1970) no. 10, pp. 2766-2769 | DOI
[SW86] The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. Math. Phys., Volume 106 (1986) no. 4, pp. 569-580 | DOI | Zbl
[Tha91] The Dirac equation, Texts and Monographs in Physics, Springer, 1991 | Zbl
Cité par Sources :





