The Dirac–Klein–Gordon system in the strong coupling limit
[Limite de couplage fort du système de Dirac–Klein–Gordon]
Annales Henri Lebesgue, Tome 6 (2023), pp. 541-573

We study the Dirac equation coupled to scalar and vector Klein–Gordon fields in the limit of strong coupling and large masses of the fields. We prove convergence of the solutions to those of a cubic non-linear Dirac equation, given that the initial spinors coincide. This shows that in this parameter regime, which is relevant to the relativistic mean-field theory of nuclei, the retarded interaction is well approximated by an instantaneous, local self-interaction. We generalize this result to a many-body Dirac–Fock equation on the space of Hilbert–Schmidt operators.

Nous étudions une équation de Dirac couplée à des champs de Klein–Gordon scalaires et vectoriels dans la limite de couplages forts et de grandes masses. Nous démontrons la convergence de ses solutions vers celles d’une équation de Dirac non-linéaire, si les spineurs initiaux coïncident. Cela montre que dans ce régime de paramètres, pertinent en théorie de champ moyen relativiste des noyaux, l’interaction retardée est bien approchée par une auto-interaction locale et instantanée. Nous généralisons ensuite ce résultat à une équation de Dirac–Fock à plusieurs corps dans l’espace des opérateurs Hilbert–Schmidt.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.171
Classification : 35Q40, 81Q05, 81V35, 47J35
Keywords: Relativistic mean-field, nuclear physics, nonlinear analysis, asymptotic analysis, highly oscillatory equations, nonlinear Dirac equation, Klein-Gordon equation

Lampart, Jonas 1 ; Le Treust, Loïc 2 ; Rota Nodari, Simona 3 ; Sabin, Julien 4

1 CNRS & Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne-Franche-Comté, 9, avenue Alain Savary, 21078 Dijon Cedex, France
2 Institut de Mathématiques de Marseille, UMR CNRS 7373, Aix-Marseille Université, Rue Frédéric Joliot-Curie, 13453 MARSEILLE Cedex 13, France
3 Laboratoire Jean Alexandre Dieudonné, UMR CNRS 7351, Université Côte d’Azur, 28, avenue Valrose, 06108 Nice Cedex 2, France
4 Centre de mathématiques Laurent Schwartz, UMR CNRS 7640, École polytechnique, 91128 Palaiseau Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__541_0,
     author = {Lampart, Jonas and Le Treust, Lo{\"\i}c and Rota Nodari, Simona and Sabin, Julien},
     title = {The {Dirac{\textendash}Klein{\textendash}Gordon} system in the strong coupling limit},
     journal = {Annales Henri Lebesgue},
     pages = {541--573},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.171},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.171/}
}
TY  - JOUR
AU  - Lampart, Jonas
AU  - Le Treust, Loïc
AU  - Rota Nodari, Simona
AU  - Sabin, Julien
TI  - The Dirac–Klein–Gordon system in the strong coupling limit
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 541
EP  - 573
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.171/
DO  - 10.5802/ahl.171
LA  - en
ID  - AHL_2023__6__541_0
ER  - 
%0 Journal Article
%A Lampart, Jonas
%A Le Treust, Loïc
%A Rota Nodari, Simona
%A Sabin, Julien
%T The Dirac–Klein–Gordon system in the strong coupling limit
%J Annales Henri Lebesgue
%D 2023
%P 541-573
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.171/
%R 10.5802/ahl.171
%G en
%F AHL_2023__6__541_0
Lampart, Jonas; Le Treust, Loïc; Rota Nodari, Simona; Sabin, Julien. The Dirac–Klein–Gordon system in the strong coupling limit. Annales Henri Lebesgue, Tome 6 (2023), pp. 541-573. doi: 10.5802/ahl.171

[AA88] Added, Hélène; Added, Stéphane Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. Funct. Anal., Volume 79 (1988) no. 1, pp. 183-210 | DOI | Zbl

[BH15] Bejenaru, Ioan; Herr, Sebastian The Cubic Dirac Equation: Small Initial Data in H 1 ( 3 ), Commun. Math. Phys., Volume 335 (2015) no. 1, pp. 43-82 | MR | DOI | Zbl

[BH17] Bejenaru, Ioan; Herr, Sebastian On global well-posedness and scattering for the massive Dirac–Klein–Gordon system, J. Eur. Math. Soc., Volume 19 (2017) no. 8, pp. 2445-2467 | MR | DOI | Zbl

[BSSZ20] Baumstark, Simon; Schneider, Guido; Schratz, Katharina; Zimmermann, Dominik Effective slow dynamics models for a class of dispersive systems, J. Dyn. Differ. Equations, Volume 32 (2020) no. 4, pp. 1867-1899 | MR | DOI | Zbl

[Caz03] Cazenave, Thierry Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society; Courant Institute, 2003 | Zbl

[CH18] Candy, Timothy; Herr, Sebastian On the Majorana condition for nonlinear Dirac systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 6, pp. 1707-1717 | DOI | MR | Zbl

[CI89] Chaix, Patrick; Iracane, Daniel From quantum electrodynamics to mean-field theory. I. The Bogoliubov–Dirac–Fock formalism, J. Phys. B: At. Mol. Opt. Phys., Volume 22 (1989) no. 23, pp. 3791-3814 | DOI

[CV86] Cazenave, Thierry; Vázquez, Luis Existence of localized solutions for a classical nonlinear Dirac field, Commun. Math. Phys., Volume 105 (1986) no. 1, pp. 35-47 | Zbl | MR | DOI

[Dir28a] Dirac, Paul Adrien Maurice The quantum theory of the electron, Proc. R. Soc. Lond., Ser. A, Volume 117 (1928) no. 778, pp. 610-624 | Zbl

[Dir28b] Dirac, Paul Adrien Maurice The quantum theory of the electron. Part II, Proc. R. Soc. Lond., Ser. A, Volume 118 (1928) no. 779, pp. 351-361 | Zbl

[DO16] D’Ancona, Piero; Okamoto, Mamoru Blowup and ill-posedness results for a Dirac equation without gauge invariance, Evol. Equ. Control Theory, Volume 5 (2016) no. 2, pp. 225-234 | Zbl | MR | DOI

[DSS16] Daub, Markus; Schneider, Guido; Schratz, Katharina From the Klein–Gordon–Zakharov system to the Klein–Gordon equation, Math. Methods Appl. Sci., Volume 39 (2016) no. 18, pp. 5371-5380 | MR | DOI | Zbl

[EV97] Escobedo, Miguel; Vega, Luis A Semilinear Dirac Equation in H s ( 3 ) for s>1, SIAM J. Math. Anal., Volume 28 (1997) no. 2, pp. 338-362 | DOI | Zbl

[GHLS13] Gravejat, Philippe; Hainzl, Christian; Lewin, Mathieu; Séré, Éric Construction of the Pauli–Villars-Regulated Dirac Vacuum in Electromagnetic Fields, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 603-665 | MR | Zbl | DOI

[GSS17] Griesemer, Marcel; Schmid, Jochen; Schneider, Guido On the dynamics of the mean-field polaron in the high-frequency limit, Lett. Math. Phys., Volume 107 (2017) no. 10, pp. 1809-1821 | MR | DOI | Zbl

[HLS05] Hainzl, Christian; Lewin, Mathieu; Sparber, Christof Existence of global-in-time solutions to a generalized Dirac–Fock type evolution equation, Lett. Math. Phys., Volume 72 (2005) no. 2, pp. 99-113 | DOI | MR | Zbl

[HLS07] Hainzl, Christian; Lewin, Mathieu; Solovej, Jan Philip The mean-field approximation in quantum electrodynamics: The no-photon case, Commun. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 546-596 | DOI | MR | Zbl

[HP19] Huh, Hyungjin; Pelinovsky, Dmitry E. Nonexistence of self-similar blowup for the nonlinear Dirac equations in (1+1) dimensions, Appl. Math. Lett., Volume 92 (2019), pp. 176-183 | Zbl | MR | DOI

[KP88] Kato, Tosio; Ponce, Gustavo Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891-907 | DOI | MR | Zbl

[LS15] Lewin, Mathieu; Sabin, Julien The Hartree equation for infinitely many particles I. Well-posedness theory, Commun. Math. Phys., Volume 334 (2015) no. 1, pp. 117-170 | Zbl | MR | DOI

[MNNO05] Machihara, Shuji; Nakamura, Makoto; Nakanishi, Kenji; Ozawa, Tohru Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal., Volume 219 (2005) no. 1, pp. 1-20 | DOI | MR | Zbl

[MNO03] Machihara, Shuji; Nakanishi, Kenji; Ozawa, Tohru Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoam., Volume 19 (2003) no. 1, pp. 179-194 | MR | DOI | Zbl

[Naj92] Najman, Branko The nonrelativistic limit of the nonlinear Dirac equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 9 (1992) no. 1, pp. 3-12 | DOI | Numdam | MR | Zbl

[Rin96] Ring, Peter Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys., Volume 37 (1996), pp. 193-263 | DOI

[Sim05] Simon, Barry Trace ideals and their applications, Mathematical Surveys and Monographs, American Mathematical Society, 2005 no. 120 | Zbl

[Sol70] Soler, Mario Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, Volume 1 (1970) no. 10, pp. 2766-2769 | DOI

[SW86] Schochet, Steven H.; Weinstein, Michael I. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. Math. Phys., Volume 106 (1986) no. 4, pp. 569-580 | DOI | Zbl

[Tha91] Thaller, Bernd The Dirac equation, Texts and Monographs in Physics, Springer, 1991 | Zbl

Cité par Sources :