[Un contre-exemple à une version renforcée d’une question de V. D. Milman]
Let be the standard Euclidean norm on and let be a normed space. A subspace is strongly -Euclidean if there is a constant such that for every , and say that it is strongly -complemented if , where is the orthogonal projection from to and denotes the operator norm of with respect to the norm on . We give an example of a normed space of arbitrarily high dimension that is strongly 2-Euclidean but contains no 2-dimensional subspace that is both strongly -Euclidean and strongly -complemented, where is an absolute constant. This property is closely related to an old question of Vitali Milman. The example is probabilistic in nature.
Soit la norme euclidienne standard sur et soit un espace normé. Un sous-espace est fortement -euclidien s’il existe une constante telle que pour tout , et fortement -complémenté si , où est la projection orthogonale de sur et désigne la norme d’opérateur de par rapport à la norme sur . Nous donnons un exemple d’un espace normé avec une dimension arbitrairement grande qui est fortement -euclidien mais ne contient pas de sous-espace à dimensions qui soit à la fois fortement -euclidien et fortement -complémenté, où est une constante absolue. Cette propriété est étroitement liée à une vieille question de Vitali Milman. L’exemple est de nature probabiliste.
Révisé le :
Accepté le :
Publié le :
Keywords: normed space, almost Euclidean, well complemented
Gowers, Timothy 1 ; Wyczesany, Katarzyna 2
CC-BY 4.0
@article{AHL_2023__6__427_0,
author = {Gowers, Timothy and Wyczesany, Katarzyna},
title = {A counterexample to a strengthening of a question of {V.} {D.} {Milman}},
journal = {Annales Henri Lebesgue},
pages = {427--448},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.168},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.168/}
}
TY - JOUR AU - Gowers, Timothy AU - Wyczesany, Katarzyna TI - A counterexample to a strengthening of a question of V. D. Milman JO - Annales Henri Lebesgue PY - 2023 SP - 427 EP - 448 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.168/ DO - 10.5802/ahl.168 LA - en ID - AHL_2023__6__427_0 ER -
Gowers, Timothy; Wyczesany, Katarzyna. A counterexample to a strengthening of a question of V. D. Milman. Annales Henri Lebesgue, Tome 6 (2023), pp. 427-448. doi: 10.5802/ahl.168
[AAGM15] Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, 202, American Mathematical Society, 2015 | Zbl | DOI
[BL89] Almost Euclidean sections in spaces with a symmetric basis, Geometric aspects of functional analysis, Isr. Semin., GAFA, Isr. 1987-88 (Lecture Notes in Mathematics), Volume 1376, Springer (1989), pp. 278-288 | Zbl | MR
[Dvo61] Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon Press (1961), pp. 123-160 | Zbl
[FLM77] The dimension of almost spherical sections of convex bodies, Acta Math., Volume 139 (1977), pp. 53-94 | Zbl | DOI | MR
[GM01] Euclidean structure in finite dimensional normed spaces, Handbook of the geometry of Banach spaces, Volume 1, Elsevier, 2001, pp. 707-779 | Zbl | DOI
[Gro56] Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky–Rogers, Bol. Soc. Mat. São Paulo, Volume 8 (1956), pp. 83-110 | Zbl
[GW22] High-dimensional tennis balls, Comb. Theory, Volume 2 (2022) no. 2, 15 | Zbl | DOI | MR
[Lin92] Almost spherical sections, their existence and their applications, Jahresbericht der Deutschen Mathematiker-Vereinigung. Jubiläumstagung: 100 Jahre DMV, Bremen, Deutschland, 17.-22. September 1990. Hauptvorträge, Teubner (1992), pp. 39-61 | Zbl
[LS08] Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits, Commun. Contemp. Math., Volume 10 (2008) no. 4, pp. 477-489 | Zbl | DOI | MR
[Mil71] New proof of the theorem of Dvoretzky on intersections of convex bodies, Funct. Anal. Appl., Volume 5 (1971), pp. 28-37 | Zbl
[Mil92] Dvoretzky’s theorem-Thirty years later, Geom. Funct. Anal., Volume 2 (1992) no. 4, pp. 455-479 | Zbl | DOI | MR
[Sch13] Euclidean sections of convex bodies, Asymptotic geometric analysis. Proceedings of the fall 2010 Fields Institute thematic program (Fields Institute Communications), Volume 68, Springer; The Fields Institute for Research in the Mathematical Sciences, 2013, pp. 271-288 | Zbl | MR | DOI
[STJ80] On nearly Euclidean decomposition for some classes of Banach spaces, Compos. Math., Volume 40 (1980) no. 3, pp. 367-385 | Zbl | MR | Numdam
[STJ09] On the nontrivial projection problem, Adv. Math., Volume 221 (2009) no. 2, pp. 331-342 | Zbl | DOI | MR
Cité par Sources :





