[Extensions centrales et cohomologie bornée]
It was shown by Gersten that a central extension of a finitely generated group is quasi-isometrically trivial provided that its Euler class is bounded. We say that a finitely generated group satisfies Property QITB (quasi-isometrically trivial implies bounded) if the Euler class of any quasi-isometrically trivial central extension of is bounded. We exhibit a finitely generated group which does not satisfy Property QITB. This answers a question by Neumann and Reeves, and provides partial answers to related questions by Wienhard and Blank. We also prove that Property QITB holds for a large class of groups, including amenable groups, right-angled Artin groups, relatively hyperbolic groups with amenable peripheral subgroups, and 3-manifold groups.
Finally, we show that Property QITB holds for every finitely presented group if a conjecture by Gromov on bounded primitives of differential forms holds as well.
Gersten a montré qu’une extension centrale d’un groupe de type fini est quasi-isométriquement triviale lorsque sa classe d’Euler est bornée. On dit qu’un groupe de type fini vérifie la propriété QITB (quasi-isométriquement trivial implique borné) si la classe d’Euler de toute extension centrale quasi-isométriquement triviale de est bornée. Nous exhibons un groupe de type fini qui ne satisfait pas la propriété QITB. Cela répond à une question de Neumann et Reeves et fournit des réponses partielles à des questions reliées de Wienhard et Blank. Nous prouvons également que la propriété QITB est satisfaite par une grande classe de groupes, contenant les groupes moyennables, les groupes d’Artin à angle droit, les groupes relativement hyperboliques avec des sous-groupes périphériques moyennables et les groupes de 3-variétés.
Enfin, nous montrons que la propriété QITB est valable pour tout groupe de présentation finie si une conjecture de Gromov sur les primitives bornées de formes différentielles est également valable.
Révisé le :
Accepté le :
Publié le :
Frigerio, Roberto 1 ; Sisto, Alessandro 2
CC-BY 4.0
@article{AHL_2023__6__225_0,
author = {Frigerio, Roberto and Sisto, Alessandro},
title = {Central extensions and bounded cohomology},
journal = {Annales Henri Lebesgue},
pages = {225--258},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.164},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.164/}
}
Frigerio, Roberto; Sisto, Alessandro. Central extensions and bounded cohomology. Annales Henri Lebesgue, Tome 6 (2023), pp. 225-258. doi: 10.5802/ahl.164
[AG99] A homological characterization of hyperbolic groups, Invent. Math., Volume 135 (1999) no. 3, pp. 723-742 | MR | DOI | Zbl
[AM22] Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov (2022) (https://arxiv.org/abs/2207.03972)
[BBF + 14] Isometric properties of relative bounded cohomology, J. Topol. Anal., Volume 6 (2014) no. 1, pp. 1-25 | DOI | Zbl
[BD15] Uniformly finite homology and amenable groups, Algebr. Geom. Topol., Volume 15 (2015) no. 1, pp. 467-492 | DOI | MR | Zbl
[BE78] Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra, Volume 13 (1978), pp. 277-319 | DOI | Zbl
[BG88] Surfaces et cohomologie bornée, Invent. Math., Volume 92 (1988) no. 3, pp. 509-526 | DOI | Zbl
[BI07] Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity, Geom. Dedicata, Volume 125 (2007), pp. 1-23 | MR | DOI | Zbl
[Bla14] Relative Bounded Cohomology for Groupoids, Ph. D. Thesis, University of Regensburg, Regensburg, Germany (2014) (https://d-nb.info/1068055944/34)
[BNW12a] A cohomological characterisation of Yu’s property A for metric spaces, Geom. Topol., Volume 16 (2012) no. 1, pp. 391-432 | DOI | Zbl | MR
[BNW12b] Pairings, duality, amenability and bounded cohomology, J. Eur. Math. Soc., Volume 14 (2012) no. 5, pp. 1513-1518 | DOI | MR | Zbl
[Bro81] The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv., Volume 56 (1981), pp. 581-598 | MR | DOI | Zbl
[Bro82] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI | Zbl
[BW92] Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 907-918 | DOI | Zbl | MR
[CHLI04] A vanishing theorem for the tangential de Rham cohomology of a foliation with amenable fundamental groupoid, Geom. Dedicata, Volume 103 (2004), pp. 205-223 | MR | Zbl | DOI
[DL17] The -semi-norm on uniformly finite homology, Forum Math., Volume 29 (2017) no. 6, pp. 1325-1336 | DOI | Zbl | MR
[FK16] On quasihomomorphisms with noncommutative targets, Geom. Funct. Anal., Volume 26 (2016) no. 2, pp. 478-519 | MR | DOI | Zbl
[FLS15] Rigidity of high dimensional graph manifolds, Astérisque, 372, Société Mathématique de France, 2015 | Zbl | MR
[FM23] Gromov’s theory of multicomplexes with applications to bounded cohomology and simplicial volume, Memoirs of the American Mathematical Society, 1402, American Mathematical Society, 2023 | DOI
[Fra18] A characterization of relatively hyperbolic groups via bounded cohomology, Groups Geom. Dyn., Volume 12 (2018) no. 3, pp. 919-960 | MR | DOI | Zbl
[Fri17] Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, 227, American Mathematical Society, 2017 | Zbl | DOI
[Gab83] Foliations and the topology of 3-manifolds, J. Differ. Geom., Volume 18 (1983), pp. 445-503 | MR | Zbl
[Ger] Bounded cohomology and combings of groups – version 5.5 (available at http://citeseerx.ist.psu.edu)
[Ger92] Bounded cocycles and combings of groups, Int. J. Algebra Comput., Volume 2 (1992) no. 3, pp. 307-326 | DOI | Zbl | MR
[Ger96] A Note On Cohomological Vanishing And The Linear Isoperimetric Inequality, 1996 (preprint available at http://www. math. utah. edu/~gersten)
[Ger98] Cohomological lower bounds for isoperimetric functions on groups, Topology, Volume 37 (1998) no. 5, pp. 1031-1072 | DOI | MR | Zbl
[Gro81] Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Annals of Mathematics Studies), Volume 97, Princeton University Press, 1981, pp. 183-213 | DOI | MR | Zbl
[Gro82] Volume and bounded cohomology, Publ. Math. Inst. Hautes Étud. Sci., Volume 56 (1982), pp. 5-99 | Numdam | Zbl
[Gro91] Kähler hyperbolicity and -Hodge theory, J. Differ. Geom., Volume 33 (1991) no. 1, pp. 263-292 | Zbl
[Gro93] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993 | Zbl
[GS87] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., Volume 62 (1987), pp. 185-239 | DOI | Zbl
[Heu20] Low-dimensional bounded cohomology and extensions of groups, Math. Scand., Volume 126 (2020) no. 1, pp. 5-31 | DOI | MR | Zbl
[Iva87] Foundation of the theory of bounded cohomology, J. Sov. Math., Volume 37 (1987), pp. 1090-1114 | DOI | Zbl
[KL01] Groups quasi-isometric to symmetric spaces, Commun. Anal. Geom., Volume 9 (2001) no. 2, pp. 239-260 | MR | DOI | Zbl
[Mil22] -cohomology, bounded differential forms and isoperimetric inequalities (2022) (https://arxiv.org/abs/2107.09089)
[Min99] –cohomology and metabolicity of negatively curved complexes, Int. J. Algebra Comput., Volume 9 (1999) no. 1, pp. 51-77 | DOI | MR | Zbl
[Min00] Higher dimensional isoperimetric functions in hyperbolic groups, Math. Z., Volume 233 (2000) no. 2, pp. 327-345 | DOI | MR | Zbl
[Min01] Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001), pp. 807-839 | MR | DOI | Zbl
[Mun66] Elementary differential topology. Lectures given at Massachusetts Institute of Technology, Fall, 1961. Revised edition, Annals of Mathematics Studies, 54, American Mathematical Society, 1966 | MR | Zbl
[NR96] Regular cocycles and biautomatic structures, Int. J. Algebra Comput., Volume 6 (1996) no. 3, pp. 313-324 | MR | DOI | Zbl
[NR97] Central extensions of word hyperbolic groups, Ann. Math., Volume 145 (1997) no. 1, pp. 183-192 | MR | DOI | Zbl
[NS10] Controlled coarse homology and isoperimetric inequalities, J. Topol., Volume 3 (2010) no. 2, pp. 443-462 | DOI | MR | Zbl
[Ol’91] Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), 70, Kluwer Academic Publishers, 1991 (translated from the 1989 Russian original by Yu. A. Bakhturin) | Zbl | MR | DOI
[Sik01] Growth of a primitive of a differential form, Bull. Soc. Math. France, Volume 129 (2001) no. 2, pp. 156-168 | Numdam | MR | Zbl
[Sul76] Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 | MR | DOI | Zbl
[Thu86] A norm for the homology of -manifolds, Memoirs of the American Mathematical Society, Volume 59 (1986), pp. 99-130 | MR | Zbl
[Whi40] On -complexes, Ann. Math., Volume 41 (1940), pp. 809-824 | DOI | Zbl
[Why10] Coarse bundles (2010) (https://arxiv.org/abs/1006.3347)
[Wie12] Remarks on and around bounded differential forms, Pure Appl. Math. Q., Volume 8 (2012) no. 2, pp. 479-496 | MR | DOI | Zbl
[Żuk00] On an isoperimetric inequality for infinite finitely generated groups, Topology, Volume 39 (2000) no. 5, pp. 947-956 | Zbl | MR
Cité par Sources :





