A new proof of finiteness of maximal arithmetic reflection groups
[Une nouvelle preuve de finitude des groupes de réflexion arithmétiques maximaux]
Annales Henri Lebesgue, Tome 6 (2023), pp. 151-159

We give a new proof of the finiteness of maximal arithmetic reflection groups. Our proof is novel in that it makes no use of trace formulas or other tools from the theory of automorphic forms and instead relies on the arithmetic Margulis lemma of Fraczyk, Hurtado and Raimbault.

Nous donnons une nouvelle preuve de la finitude des groupes de réflexion arithmétiques maximaux. Notre preuve est nouvelle en ce qu’elle n’utilise pas de formules de traces ou d’autres outils de la théorie des formes automorphes et s’appuie à la place sur le lemme arithmétique de Margulis de Fraczyk, Hurtado et Raimbault.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.162
Classification : 20F60, 22F50, 37B05, 37C85, 37E10, 57R30
Keywords: Reflection groups, hyperbolic geometry

Fisher, David 1 ; Hurtado, Sebastian 2

1 Rice University Math Department MS 136 P.O. Box 1892 Houston, TX 77005-1892 (USA)
2 Department of Mathematics PO Box 208283 New Haven, CT 06520-8283 Mailcode: 376 (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AHL_2023__6__151_0,
     author = {Fisher, David and Hurtado, Sebastian},
     title = {A new proof of finiteness of maximal arithmetic reflection groups},
     journal = {Annales Henri Lebesgue},
     pages = {151--159},
     year = {2023},
     publisher = {\'ENS Rennes},
     volume = {6},
     doi = {10.5802/ahl.162},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/ahl.162/}
}
TY  - JOUR
AU  - Fisher, David
AU  - Hurtado, Sebastian
TI  - A new proof of finiteness of maximal arithmetic reflection groups
JO  - Annales Henri Lebesgue
PY  - 2023
SP  - 151
EP  - 159
VL  - 6
PB  - ÉNS Rennes
UR  - https://www.numdam.org/articles/10.5802/ahl.162/
DO  - 10.5802/ahl.162
LA  - en
ID  - AHL_2023__6__151_0
ER  - 
%0 Journal Article
%A Fisher, David
%A Hurtado, Sebastian
%T A new proof of finiteness of maximal arithmetic reflection groups
%J Annales Henri Lebesgue
%D 2023
%P 151-159
%V 6
%I ÉNS Rennes
%U https://www.numdam.org/articles/10.5802/ahl.162/
%R 10.5802/ahl.162
%G en
%F AHL_2023__6__151_0
Fisher, David; Hurtado, Sebastian. A new proof of finiteness of maximal arithmetic reflection groups. Annales Henri Lebesgue, Tome 6 (2023), pp. 151-159. doi: 10.5802/ahl.162

[ABSW08] Agol, Ian; Belolipetsky, Mikhail; Storm, Peter; Whyte, Kevin Finiteness of arithmetic hyperbolic reflection groups, Groups Geom. Dyn., Volume 2 (2008) no. 4, pp. 481-498 | Zbl | DOI | MR

[Ago06] Agol, Ian Finiteness of arithmetic Kleinian reflection groups, Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, European Mathematical Society, 2006, pp. 951-960 | Zbl | MR

[And71] Andreev, E. M. Intersection of plane boundaries of a polytope with acute angles, Math. Notes, Volume 8 (1971), pp. 761-764 | DOI | Zbl

[Bel16] Belolipetsky, Mikhail Arithmetic hyperbolic reflection groups, Bull. Am. Math. Soc., Volume 53 (2016) no. 3, pp. 437-475 | Zbl | DOI | MR

[Bre11] Breuillard, Emmanuel A height gap theorem for finite subsets of GL d (Q ¯) and nonamenable subgroups, Ann. Math., Volume 174 (2011) no. 2, pp. 1057-1110 | Zbl | DOI | MR

[CHL21] Chen, Lvzhou; Hurtado, Sebastian; Lee, Homin A height gap in GL d (Q ¯) and almost laws (2021) (https://arxiv.org/abs/2110.15404)

[Lin18] Linowitz, Benjamin Bounds for arithmetic hyperbolic reflection groups in dimension 2, Transform. Groups, Volume 23 (2018) no. 3, pp. 743-753 | Zbl | DOI | MR

[LMR06] Long, Darren D.; Maclachlan, Colin; Reid, Alan W. Arithmetic Fuchsian groups of genus zero, Pure Appl. Math. Q., Volume 2 (2006) no. 2, pp. 569-599 | Zbl | DOI | MR

[MHR22] Mikolaj, Fraczyk; Hurtado, Sebastian; Raimbault, Jean Homotopy type and homology versus volume for arithmetic locally symmetric spaces (2022) (https://arxiv.org/abs/2202.13619)

[Nik80] Nikulin, Vyacheslav V. On the arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 44 (1980) no. 3, pp. 637-669 | MR | Zbl

[Nik07] Nikulin, Vyacheslav V. Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Math., Volume 71 (2007) no. 1, pp. 53-56 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 71, No. 1, pp. 55-60 (2007) | Zbl | DOI

[Rai22] Raimbault, Jean Coxeter polytopes and Benjamini–Schramm convergence (2022) (https://arxiv.org/abs/2209.03002)

[Vin85] Vinberg, Ernest B. Hyperbolic reflection groups, Russ. Math. Surv., Volume 40 (1985) no. 1, pp. 31-75 | MR | Zbl | DOI

Cité par Sources :