[Une nouvelle preuve de finitude des groupes de réflexion arithmétiques maximaux]
We give a new proof of the finiteness of maximal arithmetic reflection groups. Our proof is novel in that it makes no use of trace formulas or other tools from the theory of automorphic forms and instead relies on the arithmetic Margulis lemma of Fraczyk, Hurtado and Raimbault.
Nous donnons une nouvelle preuve de la finitude des groupes de réflexion arithmétiques maximaux. Notre preuve est nouvelle en ce qu’elle n’utilise pas de formules de traces ou d’autres outils de la théorie des formes automorphes et s’appuie à la place sur le lemme arithmétique de Margulis de Fraczyk, Hurtado et Raimbault.
Révisé le :
Accepté le :
Publié le :
Keywords: Reflection groups, hyperbolic geometry
Fisher, David 1 ; Hurtado, Sebastian 2
CC-BY 4.0
@article{AHL_2023__6__151_0,
author = {Fisher, David and Hurtado, Sebastian},
title = {A new proof of finiteness of maximal arithmetic reflection groups},
journal = {Annales Henri Lebesgue},
pages = {151--159},
year = {2023},
publisher = {\'ENS Rennes},
volume = {6},
doi = {10.5802/ahl.162},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.162/}
}
TY - JOUR AU - Fisher, David AU - Hurtado, Sebastian TI - A new proof of finiteness of maximal arithmetic reflection groups JO - Annales Henri Lebesgue PY - 2023 SP - 151 EP - 159 VL - 6 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.162/ DO - 10.5802/ahl.162 LA - en ID - AHL_2023__6__151_0 ER -
Fisher, David; Hurtado, Sebastian. A new proof of finiteness of maximal arithmetic reflection groups. Annales Henri Lebesgue, Tome 6 (2023), pp. 151-159. doi: 10.5802/ahl.162
[ABSW08] Finiteness of arithmetic hyperbolic reflection groups, Groups Geom. Dyn., Volume 2 (2008) no. 4, pp. 481-498 | Zbl | DOI | MR
[Ago06] Finiteness of arithmetic Kleinian reflection groups, Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, European Mathematical Society, 2006, pp. 951-960 | Zbl | MR
[And71] Intersection of plane boundaries of a polytope with acute angles, Math. Notes, Volume 8 (1971), pp. 761-764 | DOI | Zbl
[Bel16] Arithmetic hyperbolic reflection groups, Bull. Am. Math. Soc., Volume 53 (2016) no. 3, pp. 437-475 | Zbl | DOI | MR
[Bre11] A height gap theorem for finite subsets of and nonamenable subgroups, Ann. Math., Volume 174 (2011) no. 2, pp. 1057-1110 | Zbl | DOI | MR
[CHL21] A height gap in and almost laws (2021) (https://arxiv.org/abs/2110.15404)
[Lin18] Bounds for arithmetic hyperbolic reflection groups in dimension 2, Transform. Groups, Volume 23 (2018) no. 3, pp. 743-753 | Zbl | DOI | MR
[LMR06] Arithmetic Fuchsian groups of genus zero, Pure Appl. Math. Q., Volume 2 (2006) no. 2, pp. 569-599 | Zbl | DOI | MR
[MHR22] Homotopy type and homology versus volume for arithmetic locally symmetric spaces (2022) (https://arxiv.org/abs/2202.13619)
[Nik80] On the arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 44 (1980) no. 3, pp. 637-669 | MR | Zbl
[Nik07] Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Math., Volume 71 (2007) no. 1, pp. 53-56 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 71, No. 1, pp. 55-60 (2007) | Zbl | DOI
[Rai22] Coxeter polytopes and Benjamini–Schramm convergence (2022) (https://arxiv.org/abs/2209.03002)
[Vin85] Hyperbolic reflection groups, Russ. Math. Surv., Volume 40 (1985) no. 1, pp. 31-75 | MR | Zbl | DOI
Cité par Sources :





