[Anneau de Chow et gonalité des variétés abéliennes générales]
We study the (covering) gonality of abelian varieties and their orbits of zero-cycles for rational equivalence. We show that any orbit for rational equivalence of zero-cycles of degree has dimension at most . Building on the work of Pirola, we show that very general abelian varieties of dimension have (covering) gonality at least , where grows like . This answers a question asked by Bastianelli, De Poi, Ein, Lazarsfeld and B. Ullery. We also obtain results on the Chow ring of very general abelian varieties of dimension , e.g., if , the set of divisors such that in is at most countable.
Nous étudions la gonalité des variétés abéliennes ainsi que leurs orbites de zéro-cycles pour l’équivalence rationnelle. Nous montrons que l’orbite d’un zéro-cycle de degré est de dimension au plus . En développant des idées de Pirola, nous montrons qu’une variété abélienne très générale a une gonalité au moins égale à , où croît comme . Ceci répond à une question posée par Bastianelli, De Poi, Ein, Lazarsfeld et B. Ullery. Nous obtenons aussi des résultats sur l’anneau de Chow des variétés abéliennes de dimension ; par exemple, si , l’ensemble des diviseurs tels que dans est au plus dénombrable.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.10
Keywords: Abelian varieties, covering gonality, zero-cycles, Chow ring
Voisin, Claire 1
CC-BY 4.0
@article{AHL_2018__1__313_0,
author = {Voisin, Claire},
title = {Chow ring and gonality of general abelian varieties},
journal = {Annales Henri Lebesgue},
pages = {313--332},
year = {2018},
publisher = {\'ENS Rennes},
volume = {1},
doi = {10.5802/ahl.10},
mrnumber = {3963294},
zbl = {07099972},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ahl.10/}
}
Voisin, Claire. Chow ring and gonality of general abelian varieties. Annales Henri Lebesgue, Tome 1 (2018), pp. 313-332. doi: 10.5802/ahl.10
[AP93] Rational orbits on three-symmetric products of abelian varieties, Trans. Am. Math. Soc., Volume 337 (1993) no. 2, pp. 965-980 | Zbl | MR | DOI
[BDPE + 17] Measures of irrationality for hypersurfaces of large degree, Compos. Math., Volume 153 (2017) no. 11, pp. 2368-2393 | Zbl | MR | DOI
[Bea82] Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Mathematics), Volume 1016, Springer, 1982, pp. 238-260 | Zbl | DOI
[Bea83] Variétés kählériennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 755-782 | Zbl | DOI
[Blo76] Some elementary theorems about algebraic cycles on Abelian varieties, Invent. Math., Volume 37 (1976) no. 3, pp. 215-228 | Zbl | MR | DOI
[CvG93] Note on curves in a Jacobian, Compos. Math., Volume 88 (1993) no. 3, pp. 333-353 | Zbl | Numdam | MR
[Her07] Algebraic cycles on the Jacobian of a curve with a linear system of given dimension, Compos. Math., Volume 143 (2007) no. 4, pp. 883-899 | Zbl | MR | DOI
[Huy14] Curves and cycles on K3 surfaces, Algebr. Geom., Volume 1 (2014) no. 1, pp. 69-106 | Zbl | MR
[Mat58] Cycles on abelian varieties, Proc. Am. Math. Soc., Volume 9 (1958), pp. 88-98 | Zbl | MR | DOI
[Mum69] Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1969), pp. 195-204 | Zbl | MR | DOI
[MZ17] On the group of zero-cycles of holomorphic symplectic varieties (2017) (https://arxiv.org/abs/1711.10045)
[Pir89] Curves on generic Kummer varieties, Duke Math. J., Volume 59 (1989), pp. 701-708 | Zbl | MR | DOI
[Pir95] Abel-Jacobi invariant and curves on generic abelian varieties, Abelian varieties (Egloffstein, 1993), Walter de Gruyter, 1995, pp. 237-249 | Zbl | MR
[Voi92] Sur les zéro-cycles de certaines hypersurfaces munies d’un automorphisme, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1992) no. 4, pp. 473-492 | Zbl
[Voi15a] Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2015, pp. 422-436 | Zbl | MR | DOI
[Voi15b] Some new results on modified diagonals, Geom. Topol., Volume 19 (2015) no. 6, pp. 3307-3343 | Zbl | MR | DOI
[Voi16] Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady, K3 surfaces and their moduli (Progress in Mathematics), Birkhäuser/Springer, 2016, pp. 365-399 | Zbl
Cité par Sources :





