Shifted Contact Structures and Their Local Theory
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 1019-1057

In this paper, we formally define k-shifted contact structures on derived (Artin) stacks and study their local properties in the context of derived algebraic geometry. In this regard, for k-shifted contact derived 𝕂-schemes, we develop a Darboux-like theorem and formulate the notion of symplectification.

Dans cet article, nous définissons formellement des structures contacts k-décalées sur des champs (d’Artin) dérivés et étudions leurs propriétés locales dans le contexte de la géométrie algébrique dérivée. À cet égard, pour les 𝕂-schémas dérivés contacts k-décalés, nous développons un théorème de type Darboux et formulons la notion de symplectification.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1795
Classification : 14A20, 14A30, 14F08
Keywords: derived algebraic geometry, shifted symplectic structures, contact geometry
Mots-clés : la géométrie algébrique dérivée, structures symplectiques décalées, géométrie contact

Berktav, Kadri İlker  1

1 University of Zurich, Institute of Mathematics, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_4_1019_0,
     author = {Berktav, Kadri \.Ilker},
     title = {Shifted {Contact} {Structures} and {Their} {Local} {Theory}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1019--1057},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     doi = {10.5802/afst.1795},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1795/}
}
TY  - JOUR
AU  - Berktav, Kadri İlker
TI  - Shifted Contact Structures and Their Local Theory
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1019
EP  - 1057
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1795/
DO  - 10.5802/afst.1795
LA  - en
ID  - AFST_2024_6_33_4_1019_0
ER  - 
%0 Journal Article
%A Berktav, Kadri İlker
%T Shifted Contact Structures and Their Local Theory
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1019-1057
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1795/
%R 10.5802/afst.1795
%G en
%F AFST_2024_6_33_4_1019_0
Berktav, Kadri İlker. Shifted Contact Structures and Their Local Theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 1019-1057. doi: 10.5802/afst.1795

[1] Anel, Mathieu The geometry of ambiguity: an introduction to the ideas of derived geometry, New spaces in mathematics—formal and conceptual reflections, Cambridge University Press, 2021, pp. 505-553 | DOI | Zbl | MR

[2] Arnolʼd, Vladimir I. Mathematical Methods of Classical Mechanics, Nauka, 1989 | DOI

[3] Ben-Bassat, Oren; Brav, Christopher; Bussi, Vittoria; Joyce, Dominic A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol., Volume 19 (2015) no. 3, pp. 1287-1359 | Zbl | DOI | MR

[4] Brav, Christopher; Bussi, Vittoria; Joyce, Dominic A Darboux theorem for derived schemes with shifted symplectic structure, J. Am. Math. Soc., Volume 32 (2019) no. 2, pp. 399-443 | Zbl | DOI | MR

[5] Calaque, Damien Shifted cotangent stacks are shifted symplectic, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 1, pp. 67-90 | MR | Numdam | DOI | Zbl

[6] Calaque, Damien; Pantev, Tony; Toën, Bertrand; Vaquié, Michel; Vezzosi, Gabriele Shifted Poisson structures and deformation quantization, J. Topol., Volume 10 (2017) no. 2, pp. 483-584 | Zbl | DOI | MR

[7] Geiges, Hansjörg An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008 | DOI | MR

[8] Grataloup, Albin Derived Symplectic Reduction and L-Equivariant Geometry (2023) | arXiv | DOI

[9] Joyce, Dominic; Safronov, Pavel A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019), pp. 831-908 | MR | Numdam | Zbl | DOI

[10] Lurie, Jacob Derived algebraic geometry, Ph. D. Thesis, Massachusetts Institute of Technology (2004)

[11] Lurie, Jacob Higher algebra, 2017

[12] Pantev, Tony; Toën, Bertrand; Vaquié, Michel; Vezzosi, Gabriele Shifted symplectic structures, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 271-328 | DOI | MR | Numdam | Zbl

[13] Safronov, Pavel Shifted Poisson structures in representation theory (2019) (lecture notes)

[14] Silva, Ana C. Lectures on Symplectic Geometry, Lecture Notes in Mathematics, 1764, Springer, 2008 | DOI | MR

[15] Toën, Bertrand Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014) no. 2, pp. 153-240 | MR | Zbl | DOI

[16] Toën, Bertrand; Vezzosi, Gabriele Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Am. Math. Soc., Volume 193 (2008) no. 902, p. x+224 | DOI | MR | Zbl

[17] Vezzosi, Gabriele What is... a Derived Stack?, Notices Am. Math. Soc., Volume 58 (2011) no. 7, pp. 955-958 | Zbl | MR

Cité par Sources :