Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 997-1017

In this paper we study the systoles of arithmetic hyperbolic 2- and 3-manifolds. Our first result is the construction of infinitely many arithmetic hyperbolic 2- and 3-manifolds which are pairwise noncommensurable, all have the same systole, and whose volumes are explicitly bounded. Our second result fixes a positive number x and gives an upper bound for the least volume of an arithmetic hyperbolic 2- or 3-manifold whose systole is greater than x. We conclude by determining, for certain small values of x, the least volume of a principal arithmetic hyperbolic 2-manifold over or 3-manifold over (i) whose systole is greater than x.

Dans cet article, nous étudions les systoles des variétés hyperboliques arithmétiques en dimension 2 et 3. Notre premier résultat est la construction d’une infinité de variétés hyperboliques arithmétiques qui sont incommensurables deux-à-deux, ont toutes la même systole, et dont les volumes sont explicitement bornés. Notre deuxième résultat suppose fixé x>0 et donne une borne supérieure pour le plus petit volume d’une variété hyperbolique arithmétique avec une systole supérieure à x. Nous concluons en déterminant, pour certaines petites valeurs de x, le plus petit volume d’une variété hyperbolique arithmétique principale sur (en dimension 2) ou sur (i) (en dimension 3) avec une systole supérieure à x.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1793

Bozzai, Rainie  1   ; Linowitz, Benjamin  2

1 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195
2 Department of Mathematics, 10 North Professor Street, Oberlin, OH 44074
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_4_997_0,
     author = {Bozzai, Rainie and Linowitz, Benjamin},
     title = {Systoles of {Arithmetic} {Hyperbolic} 2- and {3-Manifolds}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {997--1017},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     doi = {10.5802/afst.1793},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1793/}
}
TY  - JOUR
AU  - Bozzai, Rainie
AU  - Linowitz, Benjamin
TI  - Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 997
EP  - 1017
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1793/
DO  - 10.5802/afst.1793
LA  - en
ID  - AFST_2024_6_33_4_997_0
ER  - 
%0 Journal Article
%A Bozzai, Rainie
%A Linowitz, Benjamin
%T Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 997-1017
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1793/
%R 10.5802/afst.1793
%G en
%F AFST_2024_6_33_4_997_0
Bozzai, Rainie; Linowitz, Benjamin. Systoles of Arithmetic Hyperbolic 2- and 3-Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 4, pp. 997-1017. doi: 10.5802/afst.1793

[1] Chinburg, Ted; Friedman, Eduardo An embedding theorem for quaternion algebras, J. Lond. Math. Soc., Volume 60 (1999) no. 1, pp. 33-44 | DOI | MR | Zbl

[2] Chinburg, Ted; Friedman, Eduardo; Jones, Kerry. N.; Reid, Alan W. The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 30 (2001) no. 1, pp. 1-40 | MR | Numdam | Zbl

[3] Chinburg, Ted; Friedman, Eduardo; Long, Darren D.; Reid, Alan W. Geodesics and commensurability classes of arithmetic hyperbolic 3–manifolds, Duke Math. J., Volume 145 (2008) no. 1, pp. 25-44 | Zbl

[4] Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel Constructing complete tables of quartic fields using Kummer theory, Math. Comput., Volume 72 (2003) no. 242, pp. 941-951 | DOI | MR | Zbl

[5] Duistermaat, Johannes J.; Guillemin, Victor W. The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975), pp. 39-79 | DOI | MR | Zbl

[6] Duistermaat, Johannes J.; Kolk, Johan A. C.; Varadarajan, Veeravalli S. Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math., Volume 52 (1979) no. 1, pp. 27-93 | DOI | MR | Zbl

[7] Erdős, Pál Beweis eines satzes von tschebyschef, Acta Szeged, Volume 5 (1932), pp. 194-198 | Zbl

[8] Frączyk, Mikołaj; Hurtado, Sebastian; Raimbault, Jean Homotopy type and homology versus volume for arithmetic locally symmetric spaces (2022) | arXiv

[9] Futer, David; Millichap, Christian Spectrally similar incommensurable 3-manifolds, Proc. Lond. Math. Soc., Volume 115 (2017) no. 2, pp. 411-447 | DOI | MR | Zbl

[10] Ge, Zhenchao; Milinovich, Micah B.; Pollack, Paul A note on the least prime that splits completely in a nonabelian Galois number field, Math. Z., Volume 292 (2019) no. 1-2, pp. 183-192 | Zbl | MR

[11] Gelander, Tsachik Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | MR | Zbl

[12] Jacobson, Michael J. Jr; Lukes, Richard F.; Williams, Hugh C. An investigation of bounds for the regulator of quadratic fields, Exp. Math., Volume 4 (1995) no. 3, pp. 211-225 | Zbl | DOI | MR

[13] Lagarias, Jeffrey C.; Montgomery, Hugh L.; Odlyzko, Andrew M. A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979), pp. 271-296 | Zbl | DOI | MR

[14] Lagarias, Jeffrey C.; Odlyzko, Andrew M. Effective versions of the Chebotarev density theorem, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press Inc., 1975, pp. 409-464 | Zbl | MR

[15] Linowitz, Benjamin; McReynolds, David B.; Pollack, Paul; Thompson, Lola Systoles of arithmetic hyperbolic surfaces and 3-manifolds, Math. Res. Lett., Volume 24 (2017) no. 5, pp. 1497-1522 | Zbl | DOI | MR

[16] Linowitz, Benjamin; McReynolds, David B.; Pollack, Paul; Thompson, Lola Counting and effective rigidity in algebra and geometry, Invent. Math., Volume 213 (2018) no. 2, pp. 697-758 | Zbl | DOI | MR

[17] Maclachlan, Colin; Reid, Alan W. The Arithmetic of Hyperbolic 3–Manifolds, Graduate Texts in Mathematics, 219, Springer, 2003, xiii+463 pages | DOI | MR | Zbl

[18] Millichap, Christian Mutations and short geodesics in hyperbolic 3-manifolds, Commun. Anal. Geom., Volume 25 (2017) no. 3, pp. 625-683 | DOI | MR | Zbl

[19] Pierce, Lillian B.; Turnage-Butterbaugh, Caroline L.; Wood, Melanie Matchett An effective Chebotarev density theorem for families of number fields, with an application to -torsion in class groups, Invent. Math., Volume 219 (2020) no. 2, pp. 701-778 | DOI | MR | Zbl

[20] Pollack, Paul The smallest prime that splits completely in an abelian number field, Proc. Am. Math. Soc., Volume 142 (2014) no. 6, pp. 1925-1934 | DOI | MR | Zbl

[21] Prasad, Gopal Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 69 (1989), pp. 91-117 (with an appendix by Moshe Jarden and the author) | DOI | MR | Numdam | Zbl

[22] Prasad, Gopal; Rapinchuk, Andrei S. Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 113-184 | DOI | MR | Numdam | Zbl

[23] Reid, Alan W. Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J., Volume 65 (1992) no. 2, pp. 215-228 | MR | Zbl

[24] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.4), 2021 (http://www.sagemath.org/)

[25] Schmal, Bernhard Diskriminanten, -Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern, Arch. Math., Volume 52 (1989) no. 3, pp. 245-257 | DOI | Zbl

[26] Silverman, Joseph H. Lower bounds for height functions, Duke Math. J., Volume 51 (1984), pp. 395-403 | MR | Zbl

[27] Voight, John Quaternion Algebras, Graduate Texts in Mathematics, 288, Springer, 2021, xxiii+885 pages | DOI | MR | Zbl

[28] Wang, Song An effective version of the Grunwald–Wang theorem, Ph. D. Thesis, Caltech (2001)

[29] Xylouris, Triantafyllos On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions, Acta Arith., Volume 150 (2011) no. 1, pp. 65-91 | DOI | MR | Zbl

Cité par Sources :