On some elliptic fractional s(·) problems with singular potential and general datum
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 3, pp. 681-738

The purpose this work is to address the question of existence and regularity of solutions to a class of nonlocal elliptic problems with variable-order fractional Laplace operator and whose behaviors are complicated by the presence of singular nonlinearities. First, we prove the existence of weak solutions for a large class of data, including measures in some cases. We also obtain additional regularity properties under suitable extra assumptions. Second, we show that, in the case of measures datum, existence analysis is strongly related to the fractional capacity associated to the fractional Sobolev spaces. As a consequence, we get the natural form of the adequate “fractional gradient” when dealing with the Hamilton–Jacobi fractional equation with nonlocal gradient term in the sense of Boccardo–Gallouët–Orsina decomposition Problem.

Le but de ce travail est d’étudier la question de l’existence et la régularité des solutions d’une classe de problèmes elliptiques non locaux gouvernés par l’opérateur de Laplace fractionnaire d’ordre variable, et dont le second membre est non linéaire et comporte des singularités. En premier lieu, nous prouvons l’existence de solutions faibles pour une grande classe de données, y compris pour des données mesures. Ensuite, nous montrons que lorsque les données sont régulières, les solutions le sont aussi. Enfin, nous montrons que, dans le cas de données de mesures, l’existence de solutions est fortement liée à la capacité fractionnaire associée aux espaces de Sobolev fractionnaires. Ce qui nous a permis d’obtenir la forme naturelle du « gradient fractionnaire » adéquat lorsque nous traitons l’équation fractionnaire de Hamilton–Jacobi avec un gradient non local dans le sens de décomposition de Boccardo–Gallouët–Orsina.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1785
Classification : 35B05, 35K15, 35B40, 35K55, 35K65
Keywords: The variable-order fractional linear elliptic problems, singular nonlinearities, capacities, measure decomposition, Harnack inequality

Biroud, Kheireddine  1   ; Laamri, El-Haj  2

1 Laboratoire d’Analyse Non linéaire et Mathématiques Appliquées, École Supérieure de Management de Tlemcen, No. 01, Rue Barka Ahmed Bouhannak, Imama, Tlemcen 13000, Algeria
2 Institut Élie Cartan de Lorraine, Université de Lorraine, B.P: 239, 54506 Vandœuvre-Lés-Nancy Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_3_681_0,
     author = {Biroud, Kheireddine and Laamri, El-Haj},
     title = {On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {681--738},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {3},
     doi = {10.5802/afst.1785},
     mrnumber = {4822914},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1785/}
}
TY  - JOUR
AU  - Biroud, Kheireddine
AU  - Laamri, El-Haj
TI  - On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 681
EP  - 738
VL  - 33
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1785/
DO  - 10.5802/afst.1785
LA  - en
ID  - AFST_2024_6_33_3_681_0
ER  - 
%0 Journal Article
%A Biroud, Kheireddine
%A Laamri, El-Haj
%T On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 681-738
%V 33
%N 3
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1785/
%R 10.5802/afst.1785
%G en
%F AFST_2024_6_33_3_681_0
Biroud, Kheireddine; Laamri, El-Haj. On some elliptic fractional $s(\,\cdot \,)$ problems with singular potential and general datum. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 3, pp. 681-738. doi: 10.5802/afst.1785

[1] Abatangelo, Nicola Very large solutions for the fractional Laplacian: towards a fractional Keller-Osserman condition, Adv. Nonlinear Anal., Volume 6 (2017) no. 4, pp. 383-405 | Zbl | DOI | MR

[2] Abdellaoui, Boumediene; Atmani, Somia; Biroud, Kheireddine; Laamri, El-Haj On the nonlocal KPZ Equation with a fractional gradient: existence and regularity results (submitted)

[3] Abdellaoui, Boumediene; Attar, Ahmed Quasilinear elliptic problem with Hardy potential and singular term, Commun. Pure Appl. Anal., Volume 12 (2013) no. 3, pp. 1363-1380 | DOI | Zbl | MR

[4] Abdellaoui, Boumediene; Attar, Ahmed; Bentifour, Rachid On the fractional p-lLplacian equations with weight and general datum, Adv. Nonlinear Anal., Volume 8 (2019) no. 1, pp. 144-174 | DOI | Zbl | MR

[5] Abdellaoui, Boumediene; Attar, Ahmed; Boukarabila, Youssouf O.; Laamri, El-Haj Multiplicity results for nonlocal critical problems involving Hardy potential in the whole space, Complex Var. Elliptic Equ., Volume 68 (2023) no. 3, pp. 461-497 | DOI | Zbl | MR

[6] Abdellaoui, Boumediene; Biroud, Kheireddine; Primo, Ana; Soria, Fernando; Younes, Abdelbadie Fractional KPZ equations with fractional gradient term and Hardy potential, Math. Eng., Volume 5 (2023) no. 2, 42, 36 pages | Zbl | MR

[7] Abdellaoui, Boumediene; Fernández, Antonio J.; Leonori, Tommaso; Younes, Abdelbadie Global fractional Calderón-Zygmund regularity (2021) (https://arxiv.org/abs/2107.06535)

[8] Abdellaoui, Boumediene; Fernández, Antonio J.; Leonori, Tommaso; Younes, Abdelbadie Deterministic KPZ-type equations with nonlocal gradient terms, Ann. Mat. Pura Appl., Volume 202 (2023) no. 3, pp. 1451-1468 | DOI | Zbl | MR

[9] Abdellaoui, Boumediene; Medina, María; Peral, Ireneo; Primo, Ana The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, Volume 260 (2016) no. 11, pp. 8160-8206 | DOI | Zbl | MR

[10] Adams, David R.; Hedberg, Lars I. Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1996, viii+366 pages | DOI | MR

[11] Alibaud, Nathaël; Andreianov, Boris; Bendahmane, Mostafa Renormalized solutions of the fractional Laplace equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 13-14, pp. 759-762 | Zbl | DOI | Numdam | MR

[12] Atmani, Somia; Biroud, Kheireddine; Daoud, Maha; Laamri, El-Haj On some Nonlocal Elliptic Systems with Gradient Source Terms, Acta Appl. Math., Volume 181 (2022), 9, 35 pages | DOI | Zbl | MR

[13] Autuori, Giuseppina; Pucci, Patrizia Elliptic problems involving the fractional Laplacian in N , J. Differ. Equations, Volume 255 (2013) no. 8, pp. 2340-2362 | DOI | Zbl | MR

[14] Baalal, Azeddine; Berghout, Mohamed A Theory of Capacities in fractional Sobolev space with variable exponents (2019) (https://arxiv.org/abs/1904.08997)

[15] Barrios, Begoña; De Bonis, Ida; Medina, María; Peral, Ireneo Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., Volume 13 (2015), pp. 390-407 | Zbl | MR

[16] Boccardo, Lucio; Gallouët, Thierry; Orsina, Luigi Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996) no. 5, pp. 539-551 | DOI | Numdam | Zbl | MR

[17] Boccardo, Lucio; Orsina, Luigi Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 3-4, pp. 363-380 | DOI | Zbl | MR

[18] Brézis, Haïm; Kamin, Shoshana Sublinear elliptic equations in n , Manuscr. Math., Volume 74 (1992) no. 1, pp. 87-106 | DOI | Zbl | MR

[19] Bucur, Claudia; Valdinoci, Enrico Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, 2016 | DOI | MR

[20] Caffarelli, Luis; Dávila, Gonzalo Interior regularity for fractional systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 36 (2019) no. 1, pp. 165-180 | DOI | Zbl | MR | Numdam

[21] Caffarelli, Luis; Silvestre, Luis An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | Zbl | MR

[22] Canino, Annamaria Minimax methods for singular elliptic equations with an application to a jumping problem, J. Differ. Equations, Volume 221 (2006) no. 1, pp. 210-223 | DOI | Zbl | MR

[23] Canino, Annamaria; Grandinetti, Mascia; Sciunzi, Berardino Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, J. Differ. Equations, Volume 255 (2013) no. 11, pp. 4437-4447 | DOI | MR

[24] Capella, Antonio; Dávila, Juan; Dupaigne, Louis; Sire, Yannick Regularity of radial extremal solutions for some nonlocal semilinear equations, Commun. Partial Differ. Equations, Volume 36 (2011) no. 7-9, pp. 1353-1384 | DOI | Zbl | MR

[25] Choquet, Gustave Theory of capacities, Ann. Inst. Fourier, Volume 5 (1954), pp. 131-295 | DOI | Numdam | Zbl | MR

[26] Crandall, Michael G.; Rabinowitz, Paul H.; Tartar, Luc On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equations, Volume 2 (1977), pp. 193-222 | DOI | Zbl | MR

[27] Dal Maso, Gianni On the integral representation of certain local functionals, Ric. Mat., Volume 22 (1983), pp. 85-113 | Zbl | MR

[28] Dal Maso, Gianni; Murat, François; Orsina, Luigi; Prignet, Alain Renormalization solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 28 (1999) no. 4, pp. 741-808 | Zbl | MR

[29] Daoud, Maha; Laamri, El-Haj Fractional Laplacians: a short survey, Discrete Contin. Dyn. Syst., Ser. S, Volume 15 (2022) no. 1, pp. 95-116 | DOI | Zbl | MR

[30] De Giorgi, Ennio Sulla differentiabilitá e l’analicitá delle estrimali degli integrali multipli regolari, Mem. Accad. Sci. Torino, P. I., III. Ser., Volume 3 (1957), pp. 25-43 | Zbl

[31] Di Castro, Agnese; Kuusi, Tuomo; Palatucci, Giampiero Nonlocal Harnack inequalities, J. Funct. Anal., Volume 267 (2014) no. 6, pp. 1807-1836 | DOI | Zbl | MR

[32] Di Castro, Agnese; Kuusi, Tuomo; Palatucci, Giampiero Local behavior of fractional p-minimizers, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2015) no. 5, pp. 1279-1299 | DOI | Zbl | MR

[33] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | Zbl | MR

[34] Doob, Joseph L. Classical Potential Theory and its Probabilistic Counterpart, Classics in Mathematics, Springer, 2001 (reprint of the 1984 edition) | DOI | MR

[35] Dyda, Bartłomiej A fractional order Hardy inequality, Ill. J. Math., Volume 48 (2004) no. 2, pp. 575-588 | Zbl | MR

[36] Felsinger, Matthieu; Kassmann, Moritz Local regularity for parabolic nonlocal operators, Commun. Partial Differ. Equations, Volume 38 (2013) no. 7-9, pp. 1539-1573 | DOI | Zbl | MR

[37] Ferrari, Fausto; Verbitsky, Igor E. Radial fractional Laplace operators and Hessian inequalities, J. Differ. Equations, Volume 253 (2012) no. 1, pp. 244-272 | DOI | Zbl | MR

[38] Filippas, Stathis; Moschini, Luisa; Tertikas, Achilles Sharp Trace Hardy–Sobolev–Maz’ya Inequalities and the Fractional Laplacian, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 1, pp. 109-161 | DOI | Zbl

[39] Giachetti, Daniela; Martínez-Aparicio, Pedro J.; Murat, François Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at u=0 in a domain with many small holes, J. Funct. Anal., Volume 274 (2018) no. 6, pp. 1747-1789 | DOI | Zbl | MR

[40] Giacomoni, Jacques; Mukherjee, Tuhina; Sreenadh, Konijeti Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., Volume 6 (2017) no. 3, pp. 327-354 | DOI | Zbl | MR

[41] Kikuchi, Koji; Negoro, Akira On Markov process generated by pseudodifferential operator of variable order, Osaka J. Math., Volume 34 (1997) no. 2, pp. 319-335 | Zbl | MR

[42] Kinnunen, Juha; Shanmugalingam, Nageswari Regularity of quasi-minimizers on metric spaces, Manuscr. Math., Volume 105 (2001) no. 3, pp. 401-423 | DOI | Zbl | MR

[43] Korvenpää, Janne; Kuusi, Tuomo; Palatucci, Giampiero The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3, 63, 29 pages | Zbl | MR

[44] Lazer, Alan C.; McKenna, Patrick J. On a singular nonlinear elliptic boundary-value problem, Proc. Am. Math. Soc., Volume 111 (1991) no. 3, pp. 721-730 | DOI | Zbl | MR

[45] Leonori, Tommaso; Peral, Ireneo; Primo, Ana; Soria, Fernando Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 6031-6068 | DOI | Zbl | MR

[46] Leopold, Hans-Gerd Embedding of function spaces of variable order of differentiation, Czech. Math. J., Volume 49 (1999) no. 3, pp. 633-644 | DOI | Zbl | MR

[47] Lindgren, Erik; Lindqvist, Peter Fractional eigenvalues, Calc. Var. Partial Differ. Equ., Volume 49 (2014) no. 1-2, pp. 795-826 | DOI | Zbl | MR

[48] Lorenzo, Carl F.; Hartley, Tom T. Initialized fractional calculus, Int. J. Appl. Math., Volume 3 (2000) no. 3, pp. 249-265 | Zbl | MR

[49] Lorenzo, Carl F.; Hartley, Tom T. Variable order and distributed order fractional operators, Nonlinear Dyn., Volume 29 (2002) no. 1-4, pp. 57-98 | DOI | Zbl | MR

[50] Millot, Vincent; Sire, Yannick On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125-210 | Zbl | DOI | MR

[51] Mingione, Giuseppe The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., Volume 166 (2003) no. 4, pp. 287-301 | DOI | Zbl | MR

[52] Miri, Sofiane El-Hadi On an anisotropic problem with singular nonlinearity having variable exponent, Ric. Mat., Volume 66 (2017) no. 2, pp. 415-424 | DOI | Zbl | MR

[53] Molica Bisci, Giovanni; Radulescu, Vicentiu D.; Servadei, Raffaella Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and Its Applications, 162, Cambridge University Press, 2016 | DOI | MR

[54] Phuc, Nguyen Cong Morrey global bounds and quasilinear Riccati type equations below the natural exponent, J. Math. Pures Appl., Volume 102 (2014) no. 1, pp. 99-123 | DOI | Zbl | MR

[55] Ruiz-Medina, María D.; Anh, Vo V.; Angulo, José M. Fractional generalized random fields of variable order, Stochastic Anal. Appl., Volume 22 (2004) no. 3, pp. 775-799 | DOI | Zbl | MR

[56] Schikorra, Armin Integro-differential harmonic maps into spheres, Commun. Partial Differ. Equations, Volume 40 (2015) no. 3, pp. 506-539 | DOI | MR | Zbl

[57] Shieh, Tien-Tsan; Spector, Daniel E. On a new class of fractional partial differential equations, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 321-336 | DOI | Zbl

[58] Stein, Elias M. The characterization of functions arising as potentials, Bull. Am. Math. Soc., Volume 67 (1961), pp. 102-104 | DOI | Zbl

[59] Warma, Mahamadi The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., Volume 42 (2015) no. 2, pp. 499-547 | DOI | Zbl | MR

[60] Xiang, Mingqi; Zhang, Binlin; Yang, Di Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., Theory Methods Appl., Volume 178 (2019), pp. 190-211 | DOI | Zbl | MR

[61] Zhang, Chao Entropy solutions for nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ., Volume 2014 (2014), 92, 14 pages | Zbl | MR

Cité par Sources :