Perfectly Matched Layers on Cubic Domains for Pauli’s Equations
[PML dans des domaines avec coins pour le système de Pauli]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 2, pp. 361-403

This article proves the wellposedness of the boundary value problem that arises when PML algorithms are applied to Pauli’s equations with a three dimensional rectangle as computational domain. The absorptions are positive near the boundary and zero far from the boundary so are always x-dependent. At the flat parts of the boundary of the rectangle, the natural absorbing boundary conditions are imposed. The difficulty addressed is the analysis of the resulting variable coefficient problem on the rectangular solid with its edges and corners. The Laplace transform is analysed. We derive an additional boundary condition that is automatically satisfied and yields a coercive Helmholtz boundary value problem on smoothed boundaries with uniform estimates justifying the limit of vanishing smoothing.

Uniqueness is reduced by an analyticity argument to our uniqueness theorem for symmetric hyperbolic problems in domains with trihedral corners [16]. This yields the first stability proof with x-dependent absorptions on a domain whose boundary is not smooth.

Cet article établit que le problème aux limites associé aux algorithmes PML appliqués au système de Pauli dans un domaine parallélépipédique rectangle est bien posé. Les absorptions sont des fonctions positives de la variable d’espace, strictement positives au voisinage de la frontière et nulles loin de la frontière. Les conditions aux limites absorbantes naturelles sont imposées sur les faces du parallélépipède. Les difficultés sont de deux ordres : les coefficients sont variables, et la frontière du domaine contient faces, arêtes et coins. Pour l’analyse, nous utilisons la transformée de Laplace en temps du système. Nous dérivons une condition aux limites supplémentaire et obtenons un problème aux limites de Helmholtz, coercif sur un domaine régularisé. Nous obtenons sur ce problème des estimations uniformes qui justifient le passage à la limite vers le problème avec coin. Enfin un argument d’analyticité permet d’utiliser le résultat d’unicité établi dans [16] pour les problèmes symétriques hyperboliques dans les domaines contenant un coin triédral. Ce travail fournit la première preuve de stabilité pour un problème à absorption variable dans un domaine dont la frontière n’est pas régulière.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1774
Classification : 35F46, 35J25, 35L20, 35L53, 35Q40, 65N12
Keywords: Hyperbolic boundary value problem, PML, trihedral corner, dissipative boundary conditions, PML, Bérenger, Pauli system, Laplace transform, holomorphy.

Halpern, Laurence  1   ; Rauch, Jeffrey B.  2

1 Université Sorbonne Paris Nord, LAGA, Avenue J.B. Clément, Villetaneuse, 93430 (France)
2 University of Michigan, Department of Mathematics, Ann Arbor 48109 MI (USA)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_2_361_0,
     author = {Halpern, Laurence and Rauch, Jeffrey B.},
     title = {Perfectly {Matched} {Layers} on {Cubic} {Domains} for {Pauli{\textquoteright}s} {Equations}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {361--403},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {2},
     doi = {10.5802/afst.1774},
     mrnumber = {4806787},
     zbl = {07938070},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1774/}
}
TY  - JOUR
AU  - Halpern, Laurence
AU  - Rauch, Jeffrey B.
TI  - Perfectly Matched Layers on Cubic Domains for Pauli’s Equations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 361
EP  - 403
VL  - 33
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1774/
DO  - 10.5802/afst.1774
LA  - en
ID  - AFST_2024_6_33_2_361_0
ER  - 
%0 Journal Article
%A Halpern, Laurence
%A Rauch, Jeffrey B.
%T Perfectly Matched Layers on Cubic Domains for Pauli’s Equations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 361-403
%V 33
%N 2
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1774/
%R 10.5802/afst.1774
%G en
%F AFST_2024_6_33_2_361_0
Halpern, Laurence; Rauch, Jeffrey B. Perfectly Matched Layers on Cubic Domains for Pauli’s Equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 2, pp. 361-403. doi: 10.5802/afst.1774

[1] Abarbanel, Saul; Gottlieb, David On the construction and analysis of absorbing layers in CEM, Appl. Numer. Math., Volume 27 (1998) no. 4, pp. 331-340 | Zbl | DOI | MR

[2] Agmon, Shmuel; Douglis, Avron; Nirenberg, Louis Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959) no. 4, pp. 623-727 | DOI | Zbl

[3] Agmon, Shmuel; Douglis, Avron; Nirenberg, Louis Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Commun. Pure Appl. Math., Volume 17 (1964) no. 1, pp. 35-92 | DOI | Zbl | MR

[4] Appelö, Daniel; Hagstrom, Thomas; Kreiss, Gunilla Perfectly matched layers for hyperbolic systems: General formulation, well-posedness and stability, SIAM J. Appl. Math., Volume 67 (2006) no. 1, pp. 1-23 | DOI | Zbl | MR

[5] Baffet, Daniel H.; Grote, Marcus J.; Imperiale, Sébastien; Kachanovska, Maryna Energy decay and stability of a perfectly matched layer for the wave equation, J. Sci. Comput., Volume 81 (2019) no. 3, pp. 2237-2270 | DOI | Zbl | MR

[6] Balslev, Erik; Combes, Jean-Michel Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Commun. Math. Phys., Volume 22 (1971) no. 4, pp. 280-294 | DOI | Zbl | MR

[7] Bécache, Eliane; Joly, Patrick On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations, M2AN, Math. Model. Numer. Anal., Volume 36 (2002) no. 1, pp. 87-119 | DOI | Numdam | Zbl | MR

[8] Bramble, James H.; Pasciak, Joseph E. Analysis of a Cartesian PML approximation to acoustic scattering problems in 2 and 3 , J. Comput. Appl. Math., Volume 247 (2013), pp. 209-230 | Zbl | DOI | MR

[9] Chen, Zhiming; Xiang, Xueshuang; Zhang, Xiaohui Convergence of the PML method for elastic wave scattering problems, Math. Comput., Volume 85 (2016) no. 302, pp. 2687-2714 | DOI | Zbl | MR

[10] Chew, Weng Cho; Weedon, William H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, IEEE Microwave Opt. Technol. Lett., Volume 17 (1994), pp. 599-604 | DOI

[11] Collino, Francis; Monk, Peter The Perfectly Matched Layer in Curvilinear Coordinates, SIAM J. Sci. Comput., Volume 19 (1998) no. 6, pp. 2061-2090 | DOI | Zbl | MR

[12] Coulombel, Jean-François Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 2, pp. 259-327 | DOI | Numdam | Zbl | MR

[13] Diaz, Julien; Joly, Patrick A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 29-32, pp. 3820-3853 | DOI | Zbl | MR

[14] Dyatlov, Semyon; Zworski, Maciej Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019 | DOI | MR

[15] Halpern, Laurence; Petit-Bergez, Sabrina; Rauch, Jeffrey The analysis of matched layers, Confluentes Math., Volume 3 (2011) no. 2, pp. 159-236 | DOI | Numdam | Zbl | MR

[16] Halpern, Laurence; Rauch, Jeffrey Hyperbolic boundary value problems with trihedral corners, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 8, pp. 4403-4450 | Zbl | DOI | MR

[17] Hicks, Noel J. Notes on differential geometry, 3, van Nostrand; Princeton University Press, 1965 | MR

[18] Hille, Einar; Phillips, Ralph Saul Functional analysis and semi-groups, Colloquium Publications, 31, American Mathematical Society, 1996

[19] Kato, Tosio Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 2013 | MR

[20] Lassas, Matti; Somersalo, Erkki On the existence and convergence of the solution of PML equations, Computing, Volume 60 (1998) no. 3, pp. 229-241 | DOI | MR

[21] Lassas, Matti; Somersalo, Erkki Analysis of the PML equations in general convex geometry, Proc. R. Soc. Edinb., Sect. A, Math., Volume 131 (2001) no. 5, pp. 1183-1207 | DOI | Zbl | MR

[22] Petit-Bergez, Sabrina Problèmes faiblement bien posés : discrétisation et applications, Ph. D. Thesis, Université Paris 13 (2006) (https://tel.archives-ouvertes.fr/tel-00545794/fr/)

[23] Rauch, Jeffrey Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, 133, American Mathematical Society, 2012 | DOI | MR

Cité par Sources :