Fenchel–Moreau identities on convex cones
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 2, pp. 287-309

A pointed convex cone naturally induces a partial order, and further a notion of nondecreasingness for functions. We consider extended real-valued functions defined on the cone. Monotone conjugates for these functions can be defined in an analogous way to the standard convex conjugate. The only difference is that the supremum is taken over the cone instead of the entire space. We give sufficient conditions for the cone under which the corresponding Fenchel–Moreau biconjugation identity holds for proper, convex, lower semicontinuous, and nondecreasing functions defined on the cone. In addition, we show that these conditions are satisfied by a class of cones known as perfect cones.

Un cône convexe pointu induit naturellement un ordre partiel, et de plus une notion de non-décroissance pour les fonctions. Nous considérons des fonctions étendues à valeurs réelles définies sur le cône. Les conjugués monotones de ces fonctions peuvent être définis de manière analogue au conjugué convexe standard. La seule différence est que le supremum est pris sur le cône au lieu de l’espace entier. Nous donnons des conditions suffisantes pour le cône sous lesquelles l’identité de biconjugaison de Fenchel–Moreau correspondante a lieu pour les fonctions propres, convexes, semi-continues inférieures et non décroissantes définies sur le cône. En outre, nous montrons que ces conditions sont satisfaites par une classe de cônes connue sous le nom de cônes parfaits.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1771
Classification : 46N10, 52A07
Keywords: Fenchel–Moreau identity, monotone conjugate, cone

Chen, Hong-Bin  1   ; Xia, Jiaming  2

1 Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
2 Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_2_287_0,
     author = {Chen, Hong-Bin and Xia, Jiaming},
     title = {Fenchel{\textendash}Moreau identities on convex cones},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {287--309},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {2},
     doi = {10.5802/afst.1771},
     mrnumber = {4806784},
     zbl = {07938067},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1771/}
}
TY  - JOUR
AU  - Chen, Hong-Bin
AU  - Xia, Jiaming
TI  - Fenchel–Moreau identities on convex cones
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 287
EP  - 309
VL  - 33
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1771/
DO  - 10.5802/afst.1771
LA  - en
ID  - AFST_2024_6_33_2_287_0
ER  - 
%0 Journal Article
%A Chen, Hong-Bin
%A Xia, Jiaming
%T Fenchel–Moreau identities on convex cones
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 287-309
%V 33
%N 2
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1771/
%R 10.5802/afst.1771
%G en
%F AFST_2024_6_33_2_287_0
Chen, Hong-Bin; Xia, Jiaming. Fenchel–Moreau identities on convex cones. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 2, pp. 287-309. doi: 10.5802/afst.1771

[1] Bardi, Martino; Evans, Lawrence C. On Hopf’s formulas for solutions of Hamilton–Jacobi equations, Nonlinear Anal., Theory Methods Appl., Volume 8 (1984) no. 11, pp. 1373-1381 | DOI | Zbl | MR

[2] Barker, George P. Faces and duality in convex cones, Linear Multilinear Algebra, Volume 6 (1978) no. 3, pp. 161-169 | DOI | Zbl

[3] Barker, George P. Perfect cones, Linear Algebra Appl., Volume 22 (1978), pp. 211-221 | Zbl | DOI | MR

[4] Barker, George P. Theory of cones, Linear Algebra Appl., Volume 39 (1981), pp. 263-291 | DOI | Zbl | MR

[5] Barker, George P.; Foran, James Self-dual cones in Euclidean spaces, Linear Algebra Appl., Volume 13 (1976) no. 1-2, pp. 147-155 | DOI | Zbl | MR

[6] Bauschke, Heinz H.; Combettes, Patrick L. et al. Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics, 408, Springer, 2011 | DOI | MR

[7] Bellissard, Jean; Iochum, Bruno; Lima, Ricardo Homogeneous and facially homogeneous self-dual cones, Linear Algebra Appl., Volume 19 (1978) no. 1, pp. 1-16 | DOI | Zbl | MR

[8] Brezis, Haim Functional analysis, Sobolev spaces and partial differential equations, Springer, 2010 | MR

[9] Chen, Hong-Bin Hamilton–Jacobi equations for nonsymmetric matrix inference, Ann. Appl. Probab., Volume 32 (2022) no. 4, pp. 2540-2567 | MR | DOI | Zbl

[10] Chen, Hong-Bin; Xia, Jiaming Hamilton–Jacobi equations for inference of matrix tensor products, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 58 (2022) no. 2, pp. 755-793 | DOI | MR | Zbl

[11] Dutta, Joydeep; Martínez-Legaz, Juan E.; Rubinov, Aleksandr M. Monotonic analysis over cones: I, Optimization, Volume 53 (2004) no. 2, pp. 129-146 | Zbl | DOI | MR

[12] Dutta, Joydeep; Martínez-Legaz, Juan E.; Rubinov, Aleksandr M. Monotonic analysis over cones: II, Optimization, Volume 53 (2004) no. 5-6, pp. 529-547 | DOI | Zbl

[13] Dutta, Joydeep; Martínez-Legaz, Juan E.; Rubinov, Aleksandr M. Monotonic analysis over cones: III, J. Convex Anal., Volume 15 (2008) no. 3, pp. 561-579 | Zbl | MR

[14] Hadjisavvas, Nicolas; Komlósi, Sándor; Schaible, Siegfried S Handbook of generalized convexity and generalized monotonicity, 76, Springer, 2006

[15] Horn, Roger A.; Johnson, Charles R. Matrix analysis, Cambridge University Press, 2012 | DOI | MR

[16] Lions, Pierre-Louis; Rochet, Jean-Claude Hopf formula and multitime Hamilton–Jacobi equations, Proc. Am. Math. Soc., Volume 96 (1986) no. 1, pp. 79-84 | DOI | Zbl | MR

[17] Moreau, Jean Jacques Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl., Volume 49 (1970), pp. 109-154 | Zbl | MR

[18] Mourrat, Jean-Christophe Hamilton–Jacobi equations for finite-rank matrix inference, Ann. Appl. Probab., Volume 30 (2020) no. 5, pp. 2234-2260 | DOI | MR | Zbl

[19] Mourrat, Jean-Christophe Hamilton–Jacobi equations for mean-field disordered systems, Ann. Henri Lebesgue, Volume 4 (2021), pp. 453-484 | DOI | MR | Numdam | Zbl

[20] Mourrat, Jean-Christophe Nonconvex interactions in mean-field spin glasses, Probab. Math. Phys., Volume 2 (2021) no. 2, pp. 281-339 | DOI | MR

[21] Mourrat, Jean-Christophe The Parisi formula is a Hamilton–Jacobi equation in Wasserstein space, Can. J. Math., Volume 74 (2022) no. 3, pp. 607-629 | DOI | MR | Zbl

[22] Mourrat, Jean-Christophe Free energy upper bound for mean-field vector spin glasses, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 59 (2023) no. 3, pp. 1143-1182 | Zbl | MR

[23] Penney, Richard C. Self-dual cones in Hilbert space, J. Funct. Anal., Volume 21 (1976) no. 3, pp. 305-315 | DOI | Zbl | MR

[24] Rockafellar, R Tyrrell Convex analysis, Princeton University Press, 1970 | DOI | MR

[25] Royden, Halsey L.; Fitzpatrick, Patrick Real Analysis, Prentice Hall, 2010 | MR

[26] Singer, Ivan Abstract convex analysis, 25, John Wiley & Sons, 1997 | MR

Cité par Sources :