The elliptic evolution of non-self-adjoint degree-2 Hamiltonians
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 1, pp. 237-286

We study the relationship between the classical Hamilton flow and the quantum Schrödinger evolution where the Hamiltonian is a degree-2 complex-valued polynomial. When the flow obeys a strict positivity condition equivalent to compactness of the evolution operator, we find geometric expressions for the L 2 operator norm and a singular-value decomposition of the Schrödinger evolution, using the Hamilton flow. The flow also gives a geometric composition law for these operators, which correspond to a large class of integral operators with nondegenerate Gaussian kernels.

Nous étudions la rélation entre le flot hamiltonien et l’évolution quantique de Schrödinger, où l’hamiltonien est un polynôme de degré 2 à valeurs complexes. Quand le flot vérifie une hypothèse de positivité stricte (qui est équivalente à la compacité de l’opérateur d’évolution), nous trouvons des formules géométriques pour la norme de l’opérateur d’évolution agissant sur L 2 ( n ) ainsi qu’une décomposition en valeurs singulières de cet opérateur, en fonction du flot hamiltonien. Le flot donne aussi une loi pour la composition de ces opérateurs, qui correspondent à une grande classe d’opérateurs à noyaux gaussiens.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1770

Viola, Joe  1

1 Nantes Université, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_1_237_0,
     author = {Viola, Joe},
     title = {The elliptic evolution of non-self-adjoint degree-2 {Hamiltonians}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {237--286},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     doi = {10.5802/afst.1770},
     mrnumber = {4783340},
     zbl = {07915647},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1770/}
}
TY  - JOUR
AU  - Viola, Joe
TI  - The elliptic evolution of non-self-adjoint degree-2 Hamiltonians
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 237
EP  - 286
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1770/
DO  - 10.5802/afst.1770
LA  - en
ID  - AFST_2024_6_33_1_237_0
ER  - 
%0 Journal Article
%A Viola, Joe
%T The elliptic evolution of non-self-adjoint degree-2 Hamiltonians
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 237-286
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1770/
%R 10.5802/afst.1770
%G en
%F AFST_2024_6_33_1_237_0
Viola, Joe. The elliptic evolution of non-self-adjoint degree-2 Hamiltonians. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 1, pp. 237-286. doi: 10.5802/afst.1770

[1] Aleman, Alexandru; Viola, Joe Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 8275-8288 | DOI | Zbl | MR

[2] Aleman, Alexandru; Viola, Joe On weak and strong solution operators for evolution equations coming from quadratic operators, J. Spectr. Theory, Volume 8 (2018) no. 1, pp. 33-121 | DOI | Zbl | MR

[3] Alphonse, Paul; Bernier, Joackim Gains of integrability and local smoothing effects for quadratic evolution equations, J. Funct. Anal., Volume 285 (2023) no. 10, 110119, 35 pages | DOI | Zbl | MR

[4] Alphonse, Paul; Bernier, Joackim Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects, Ann. Sci. Éc. Norm. Supér., Volume 56 (2023) no. 2, pp. 323-382 | Zbl | DOI | MR

[5] Bargmann, Valentine On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214 | MR | DOI | Zbl

[6] Ben Said, Mona; Nier, Francis; Viola, Joe Quaternionic structure and analysis of some Kramers-Fokker-Planck operators, Asymptotic Anal., Volume 119 (2020) no. 1-2, pp. 87-116 | DOI | Zbl | MR

[7] Davies, E. Brian Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, 2007, xii+451 pages | DOI | MR

[8] Folland, Gerald B. Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989, x+277 pages | MR | DOI

[9] Hitrik, Michael; Pravda-Starov, Karel; Viola, Joe From semigroups to subelliptic estimates for quadratic operators, Volume 370, 2018 no. 10, pp. 7391-7415 | DOI | Zbl

[10] Hitrik, Michael; Sjöstrand, Johannes Two minicourses on analytic microlocal analysis, Algebraic and analytic microlocal analysis. AAMA, Evanston, Illinois, USA, May 14–26, 2012 and May 20–24, 2013. Contributions of the workshops, Springer, 2018, pp. 483-540 | DOI | Zbl

[11] Hörmander, Lars L 2 estimates for Fourier integral operators with complex phase, Ark. Mat., Volume 21 (1983) no. 2, pp. 283-307 | Zbl | DOI | MR

[12] Hörmander, Lars Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995), pp. 413-449 | DOI | Zbl | MR

[13] Hörmander, Lars The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR

[14] Howe, Roger The oscillator semigroup, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) (Proceedings of Symposia in Pure Mathematics), Volume 48, American Mathematical Society, 1988, pp. 61-132 | Zbl | DOI | MR

[15] Karaki, Zeinab Study of the Kramers–Fokker–Planck quadratic operator with a constant magnetic field, J. Math. Phys., Volume 63 (2022) no. 8, 081503, 31 pages | DOI | Zbl | MR

[16] Krejčiřík, David; Siegl, Petr; Tater, Miloš; Viola, Joe Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 56 (2015) no. 10, 103513, 32 pages | MR | Zbl | DOI

[17] Leray, Jean Lagrangian analysis and quantum mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981, xvii+271 pages (translated from the French by Carolyn Schroeder) | MR

[18] Lieb, Elliott H. Gaussian kernels have only Gaussian maximizers, Invent. Math., Volume 102 (1990) no. 1, pp. 179-208 | Zbl | DOI | MR

[19] Martinez, André An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002, viii+190 pages | DOI | Numdam | MR

[20] Melin, Anders; Sjöstrand, Johannes Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Commun. Partial Differ. Equations, Volume 1 (1976) no. 4, pp. 313-400 | DOI | Zbl | MR

[21] Mityagin, Boris; Siegl, Petr; Viola, Joe Differential operators admitting various rates of spectral projection growth, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3129-3175 pure.qub.ac.uk/ws/files/153172858/misivi_2017.pdf | Zbl | DOI | MR

[22] Pravda-Starov, Karel Boundary pseudospectral behaviour for semiclassical operators in one dimension, Int. Math. Res. Not. (2007) no. 9, rnm029, 31 pages | Zbl | DOI | MR

[23] Pravda-Starov, Karel; Rodino, Luigi; Wahlberg, Patrik Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, Math. Nachr., Volume 291 (2018) no. 1, pp. 128-159 | DOI | Zbl | MR

[24] Sjöstrand, Johannes Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130 | DOI | Zbl | MR

[25] Sjöstrand, Johannes Lectures on Resonances, http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf, 2002

[26] Viola, Joe The Norm of the non-self-adjoint harmonic oscillator semigroup, Integral Equations Oper. Theory, Volume 4 (2016) no. 2, pp. 513-538 | Zbl | DOI | MR

[27] Viola, Joe Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators, Journ. Équ. Dériv. Partielles (2018) (talk:11) | Numdam | DOI

[28] White, Francis Propagation of global analytic singularities for Schrödinger equations with quadratic Hamiltonians, J. Funct. Anal., Volume 283 (2022) no. 6, 109569, 45 pages | DOI | Zbl | MR

[29] Witten, Edward Supersymmetry and Morse theory, J. Differ. Geom., Volume 17 (1982) no. 4, pp. 661-692 | Zbl | MR

[30] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR

Cité par Sources :