Persisting entropy structure for nonlocal cross-diffusion systems
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 1, pp. 69-104

For cross-diffusion systems possessing an entropy (i.e. a Lyapunov functional) we study nonlocal versions and exhibit sufficient conditions to ensure that the nonlocal version inherits the entropy structure. These nonlocal systems can be understood as population models per se or as approximation of the classical ones. With the preserved entropy, we can rigorously link the approximating nonlocal version to the classical local system. From a modelling perspective, this gives a way to prove a derivation of the model and, from a PDE perspective, this provides a regularisation scheme to prove the existence of solutions. A guiding example is the SKT model [22]. In this context, we answer positively the question raised by [12] for the derivation and thus complete the derivation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1762

Dietert, Helge  1   ; Moussa, Ayman  2

1 Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75013 Paris, France. — Partly done while at: Institut für Mathematik, Universität Leipzig, D-04103 Leipzig, Germany
2 Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), Département de Mathématiques et Applications (DMA), École Normale Supérieure (ENS-PSL), F-75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_1_69_0,
     author = {Dietert, Helge and Moussa, Ayman},
     title = {Persisting entropy structure for nonlocal cross-diffusion systems},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {69--104},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     doi = {10.5802/afst.1762},
     mrnumber = {4783332},
     zbl = {07915639},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1762/}
}
TY  - JOUR
AU  - Dietert, Helge
AU  - Moussa, Ayman
TI  - Persisting entropy structure for nonlocal cross-diffusion systems
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 69
EP  - 104
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1762/
DO  - 10.5802/afst.1762
LA  - en
ID  - AFST_2024_6_33_1_69_0
ER  - 
%0 Journal Article
%A Dietert, Helge
%A Moussa, Ayman
%T Persisting entropy structure for nonlocal cross-diffusion systems
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 69-104
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1762/
%R 10.5802/afst.1762
%G en
%F AFST_2024_6_33_1_69_0
Dietert, Helge; Moussa, Ayman. Persisting entropy structure for nonlocal cross-diffusion systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 1, pp. 69-104. doi: 10.5802/afst.1762

[1] Amann, Herbert Erratum: “Dynamic theory of quasilinear parabolic systems. III. Global existence” [Math. Z. 202 (1989), no. 2, 219–250; MR1013086 (90i:35125)], Math. Z., Volume 205 (1990) no. 2, p. 331 | DOI | MR | Zbl

[2] Bansaye, Vincent; Moussa, Ayman; Muñoz-Hernández, Felipe Stability of a cross-diffusion system and approximation by repulsive random walks: a duality approach (2021) | arXiv

[3] Bendahmane, Mostafa; Lepoutre, Thomas; Marrocco, Americo; Perthame, Benoît Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., Volume 92 (2009) no. 6, pp. 651-667 http://www.sciencedirect.com/... | DOI | Zbl | MR

[4] Braides, Andrea Local Minimization, Variational Evolution and Γ-Convergence, Lecture Notes in Mathematics, Springer, 2014, xi+174 pages | DOI | MR

[5] Chen, Li; Daus, Esther S.; Holzinger, Alexandra; Jüngel, Ansgar Rigorous derivation of population cross-diffusion systems from moderately interacting particle systems, J. Nonlinear Sci., Volume 31 (2021) no. 6, 94, 38 pages | DOI | Zbl | MR

[6] Chen, Li; Jüngel, Ansgar Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differ. Equations, Volume 224 (2006) no. 1, pp. 39-59 | DOI | MR | Zbl

[7] Chen, Xiuqing; Daus, Esther S.; Jüngel, Ansgar Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., Volume 227 (2018) no. 2, pp. 715-747 | DOI | MR | Zbl

[8] Daus, Esther S.; Desvillettes, Laurent; Dietert, Helge About the entropic structure of detailed balanced multi-species cross-diffusion equations, J. Differ. Equations, Volume 266 (2019) no. 7, pp. 3861-3882 | DOI | Zbl | MR

[9] Daus, Esther S.; Desvillettes, Laurent; Jüngel, Ansgar Cross-diffusion systems and fast-reaction limits, Bull. Sci. Math., Volume 159 (2020), 102824, 29 pages | DOI | Zbl | MR

[10] Desvillettes, Laurent; Lepoutre, Thomas; Moussa, Ayman; Trescases, Ariane On the entropic structure of reaction-cross diffusion systems, Commun. Partial Differ. Equations, Volume 40 (2015) no. 9, pp. 1705-1747 | DOI | MR | Zbl

[11] Evans, Lawrence Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, 2010 | DOI | MR

[12] Fontbona, Joaquin; Méléard, Sylvie Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J. Math. Biol., Volume 70 (2014) no. 4, pp. 829-854 | DOI | Zbl | MR

[13] Hoang, Luan T.; Nguyen, Truyen V.; Phan, Tuoc V. Gradient Estimates and Global Existence of Smooth Solutions to a Cross-Diffusion System, SIAM J. Math. Anal., Volume 47 (2015) no. 3, pp. 2122-2177 | DOI | Zbl | MR

[14] Iida, Masato; Mimura, Masayasu; Ninomiya, Hirokazu Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., Volume 53 (2006) no. 4, pp. 617-641 | DOI | Zbl | MR

[15] Jüngel, Ansgar The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, Volume 28 (2015) no. 6, pp. 1963-2001 | DOI | Zbl | MR

[16] Lepoutre, Thomas; Moussa, Ayman Entropic structure and duality for multiple species cross-diffusion systems, Nonlinear Anal., Theory Methods Appl., Volume 159 (2017), pp. 298-315 | DOI | MR | Zbl

[17] Lepoutre, Thomas; Pierre, Michel; Rolland, Guillaume Global well-posedness of a conservative relaxed cross diffusion system, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 1674-1693 | DOI | MR | Zbl

[18] Mielke, Alexander On Evolutionary Γ-Convergence for Gradient Systems, Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity (Lecture Notes in Applied Mathematics and Mechanics), Volume 3, Springer, 2016, pp. 187-249 | DOI

[19] Moussa, Ayman Some variants of the classical Aubin-Lions lemma, J. Evol. Equ., Volume 16 (2016) no. 1, pp. 65-93 | MR | Zbl | DOI

[20] Moussa, Ayman From Nonlocal to Classical Shigesada–Kawasaki–Teramoto Systems: Triangular Case with Bounded Coefficients, SIAM J. Math. Anal., Volume 52 (2020) no. 1, pp. 42-64 | DOI | Zbl | MR

[21] Serfaty, Sylvia Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., Ser. A, Volume 31 (2011) no. 4, pp. 1427-1451 | DOI | Zbl | MR

[22] Shigesada, Nanako; Kawasaki, Kohkichi; Teramoto, Ei Spatial segregation of interacting species, J. Theor. Biol., Volume 79 (1979) no. 1, pp. 83-99 | DOI | MR

[23] Stein, Elias M. Singular Integrals and Differentiability Properties of Functions (PMS-30), Princeton University Press, 1970 | DOI | MR

[24] Trescases, Ariane On triangular reaction cross-diffusion systems with possible self-diffusion, Bull. Sci. Math., Volume 140 (2016) no. 7, pp. 796-829 | DOI | Zbl | MR

[25] Zinsl, Jonathan; Matthes, Daniel Transport distances and geodesic convexity for systems of degenerate diffusion equations, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 4, pp. 3397-3438 | DOI | Zbl | MR

Cité par Sources :