Inhomogeneous spin q-Whittaker polynomials
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 1, pp. 1-68

We introduce and study an inhomogeneous generalization of the spin q-Whittaker polynomials from [15]. These are symmetric polynomials, and we prove a branching rule, skew dual and non-dual Cauchy identities, and an integral representation for them. Our main tool is a novel family of deformed Yang–Baxter equations.

Nous introduisons et étudions une généralisation inhomogène des polynômes spin de q-Whittaker de [15]. Ce sont des polynômes symétriques, et nous prouvons une règle de branchement, des identités de Cauchy asymétriques duales et non duales, et une représentation intégrale pour ces polynômes. Nous prouvons une règle de branchement, des identités de Cauchy asymétriques, duales et non-duelles, et une représentation intégrale pour ces polynômes. Notre outil principal est une nouvelle famille d’équations de Yang–Baxter déformées.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1761

Borodin, Alexei  1   ; Korotkikh, Sergei  1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2024_6_33_1_1_0,
     author = {Borodin, Alexei and Korotkikh, Sergei},
     title = {Inhomogeneous spin $q${-Whittaker} polynomials},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--68},
     year = {2024},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {1},
     doi = {10.5802/afst.1761},
     mrnumber = {4783331},
     zbl = {1547.05302},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1761/}
}
TY  - JOUR
AU  - Borodin, Alexei
AU  - Korotkikh, Sergei
TI  - Inhomogeneous spin $q$-Whittaker polynomials
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 1
EP  - 68
VL  - 33
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1761/
DO  - 10.5802/afst.1761
LA  - en
ID  - AFST_2024_6_33_1_1_0
ER  - 
%0 Journal Article
%A Borodin, Alexei
%A Korotkikh, Sergei
%T Inhomogeneous spin $q$-Whittaker polynomials
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 1-68
%V 33
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1761/
%R 10.5802/afst.1761
%G en
%F AFST_2024_6_33_1_1_0
Borodin, Alexei; Korotkikh, Sergei. Inhomogeneous spin $q$-Whittaker polynomials. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 33 (2024) no. 1, pp. 1-68. doi: 10.5802/afst.1761

[1] Aggarwal, Amol Current fluctuations of the stationary ASEP and six-vertex model, Duke Math. J., Volume 167 (2018) no. 2, pp. 269-384 | Zbl | MR

[2] Aggarwal, Amol; Borodin, Alexei Phase transitions in the ASEP and stochastic six-vertex model, Ann. Probab., Volume 47 (2019) no. 2, pp. 613-689 | Zbl | MR

[3] Barraquand, Guillaume; Corwin, Ivan Random walk in beta-distributed random environment, Probab. Theory Relat. Fields, Volume 167 (2017) no. 3, pp. 1057-1116 | DOI | Zbl | MR

[4] Borodin, Alexei On a family of symmetric rational functions, Adv. Math., Volume 306 (2017), pp. 973-1018 | DOI | Zbl | MR

[5] Borodin, Alexei Symmetric elliptic functions, IRF models, and dynamic exclusion processes, J. Eur. Math. Soc., Volume 22 (2020) no. 5, pp. 1353-1421 | DOI | Zbl | MR

[6] Borodin, Alexei; Corwin, Ivan; Petrov, Leonid; Sasamoto, Tomohiro Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz, Commun. Math. Phys., Volume 339 (2015) no. 3, pp. 1167-1245 | DOI | Zbl | MR

[7] Borodin, Alexei; Corwin, Ivan; Petrov, Leonid; Sasamoto, Tomohiro Spectral theory for the q-Boson particle system, Compos. Math., Volume 151 (2015) no. 1, pp. 1-67 | Zbl | DOI | MR

[8] Borodin, Alexei; Gorin, Vadim; Wheeler, Michael Shift-invariance for vertex models and polymers (2019) (https://arxiv.org/abs/1912.02957)

[9] Borodin, Alexei; Petrov, Leonid Integrable probability: Stochastic vertex models and symmetric functions, Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School (Les Houches, 2015), Volume 104, Oxford University Press, 2017, pp. 26-131 | DOI | Zbl | MR

[10] Borodin, Alexei; Petrov, Leonid Higher spin six vertex model and symmetric rational functions, Sel. Math., New Ser., Volume 24 (2018) no. 2, pp. 751-874 | DOI | Zbl | MR

[11] Borodin, Alexei; Petrov, Leonid Inhomogeneous exponential jump model, Probab. Theory Relat. Fields, Volume 172 (2018) no. 1-2, pp. 323-385 | DOI | Zbl | MR

[12] Borodin, Alexei; Wheeler, Michael Coloured stochastic vertex models and their spectral theory (2018) (https://arxiv.org/abs/1808.01866)

[13] Borodin, Alexei; Wheeler, Michael Nonsymmetric Macdonald polynomials via integrable vertex models (2019) (https://arxiv.org/abs/1904.06804, to appear in Trans. Am. Math. Soc.)

[14] Borodin, Alexei; Wheeler, Michael Observables of coloured stochastic vertex models and their polymer limits, Probab. Math. Phys., Volume 1 (2020) no. 1, pp. 205-265 | Zbl | DOI | MR

[15] Borodin, Alexei; Wheeler, Michael Spin q-Whittaker polynomials, Adv. Math., Volume 376 (2020), 107449, 51 pages | DOI | Zbl | MR

[16] Bosnjak, Gary; Mangazeev, Vladimir Construction of R-matrices for symmetric tensor representations related to U q (sl n ^), J. Phys. A. Math. Theor., Volume 49 (2016) no. 49, 495204, 19 pages | Zbl | MR

[17] Brubaker, Ben; Bump, Daniel; Friedberg, Solomon Schur Polynomials and The Yang-Baxter Equation, Commun. Math. Phys., Volume 308 (2011) no. 2, pp. 281-301 | Zbl | DOI | MR

[18] Buciumas, Valentin; Scrimshaw, Travis Double Grothendieck polynomials and colored lattice models (2020) (https://arxiv.org/abs/2007.04533)

[19] Bufetov, Alexey; Korotkikh, Sergei Observables of stochastic colored vertex models and local relation (2020) (https://arxiv.org/abs/2011.11426)

[20] Bufetov, Alexey; Mucciconi, Matteo; Petrov, Leonid Yang–Baxter random fields and stochastic vertex models (2019) (https://arxiv.org/abs/1905.06815)

[21] Cantini, Luigi; de Gier, Jan; Wheeler, Michael Matrix product formula for Macdonald polynomials, J. Phys. A. Math. Theor., Volume 48 (2015) no. 38, 384001, 25 pages | Zbl | MR

[22] Fomin, Sergey; Kirillov, Anatol N. The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., Volume 153 (1996) no. 1-3, pp. 123-143 | Zbl | DOI | MR

[23] Garbali, Alexandr; de Gier, Jan; Wheeler, Michael A new generalisation of Macdonald polynomials, Commun. Math. Phys., Volume 352 (2017) no. 2, pp. 773-804 | Zbl | DOI | MR

[24] Garbali, Alexandr; Wheeler, Michael Modified Macdonald polynomials and integrability, Commun. Math. Phys., Volume 374 (2020) no. 3, pp. 1809-1876 | Zbl | DOI | MR

[25] Korff, Christian Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Commun. Math. Phys., Volume 318 (2013) no. 1, pp. 173-246 | Zbl | DOI | MR

[26] Korotkikh, Sergei Hidden diagonal integrability of q-Hahn vertex model and Beta polymer model (2021) (https://arxiv.org/abs/2105.05058)

[27] Kuniba, Atsuo; Mangazeev, Vladimir; Maruyama, Shouya; Okado, Masato Stochastic R matrix for U q (A n (1) ), Nucl. Phys., B, Volume 913 (2016), pp. 248-277 | DOI | MR

[28] Macdonald, Ian Grant Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 1995, x+475 pages | Zbl | DOI | MR

[29] Mangazeev, Vladimir On the Yang-Baxter equation for the six-vertex model, Nucl. Phys., B, Volume 882 (2014), pp. 70-96 | DOI | Zbl | MR

[30] Motegi, Kohei Combinatorial properties of symmetric polynomials from integrable vertex models in finite lattice, J. Math. Phys., Volume 58 (2017) no. 9, 091703, 23 pages | Zbl | MR

[31] Motegi, Kohei; Sakai, Kazumitsu Vertex models, TASEP and Grothendieck polynomials, J. Phys. A. Math. Theor., Volume 46 (2013) no. 35, 355201, 26 pages | Zbl | MR

[32] Mucciconi, Matteo; Petrov, Leonid Spin q-Whittaker polynomials and deformed quantum Toda (2020) (https://arxiv.org/abs/2003.14260)

[33] Petrov, Leonid Refined Cauchy identity for spin Hall–Littlewood symmetric rational functions (2007) (https://arxiv.org/abs/2007.10886)

[34] Stembridge, John R. A short proof of Macdonald’s conjecture for the root systems of type A, Proc. Am. Math. Soc., Volume 102 (1988) no. 4, pp. 777-785 | Zbl

[35] Tsilevich, Natalia V. Quantum inverse scattering method for the q-boson model and symmetric functions, Funct. Anal. Appl., Volume 40 (2006) no. 3, pp. 207-217 | DOI | Zbl

[36] Wheeler, Michael; Zinn-Justin, Paul Refined Cauchy/Littlewood identities and six-vertex model partition functions. III. Deformed bosons, Adv. Math., Volume 299 (2016), pp. 543-600 | DOI | Zbl | MR

[37] Wheeler, Michael; Zinn-Justin, Paul Hall polynomials, inverse Kostka polynomials and puzzles, J. Comb. Theory, Ser. A, Volume 159 (2018), pp. 107-163 | Zbl | DOI | MR

[38] Zinn-Justin, Paul Six-vertex, loop and tiling models: integrability and combinatorics (Habilitation thesis, http://www.lpthe.jussieu.fr/~pzinn/publi/hdr.pdf, https://arxiv.org/abs/0901.0665)

Cité par Sources :