Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 5, pp. 969-1041

In the current paper we study the q-analogue introduced by Jimbo and Sakai of the well known Painlevé VI differential equation. We explain how it can be deduced from a q-analogue of Schlesinger equations and show that for a convenient change of variables and auxiliary parameters, it admits a q-analogue of Hamiltonian formulation. This allows us to show that Sakai’s q-analogue of Okamoto space of initial conditions for qP VI admits the differential Okamoto space via some natural limit process.

Dans cet article, nous étudions le q-analogue de la sixième équation de Painlevé introduit par Jimbo et Sakai. Nous expliquons comment il peut être retrouvé à partir d’un q-analogue de l’équation de Schlesinger et nous montrons que, après un changement des paramètre, il admet une formulation en terme de q-système Hamiltonien. Cela nous permet nous prouver que le q-analogue de l’espace d’Okamoto des conditions initiales introduit par Sakai admet l’espace d’Okamoto différentiel comme limite lorsque q tend vers 1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1760
Classification : 14D05, 14F35, 34M56, 39A13

Dreyfus, Thomas 1 ; Heu, Viktoria 2

1 Institut de Recherche Mathématique Avancée, U.M.R. 7501 Université de Strasbourg et C.N.R.S. 7, rue René Descartes 67084 Strasbourg, France
2 IRMA, 7 rue René Descartes, 67084 Strasbourg, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_5_969_0,
     author = {Dreyfus, Thomas and Heu, Viktoria},
     title = {Degeneration from difference to differential {Okamoto} spaces for the sixth {Painlev\'e} equation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {969--1041},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     doi = {10.5802/afst.1760},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1760/}
}
TY  - JOUR
AU  - Dreyfus, Thomas
AU  - Heu, Viktoria
TI  - Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 969
EP  - 1041
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1760/
DO  - 10.5802/afst.1760
LA  - en
ID  - AFST_2023_6_32_5_969_0
ER  - 
%0 Journal Article
%A Dreyfus, Thomas
%A Heu, Viktoria
%T Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 969-1041
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1760/
%R 10.5802/afst.1760
%G en
%F AFST_2023_6_32_5_969_0
Dreyfus, Thomas; Heu, Viktoria. Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 5, pp. 969-1041. doi: 10.5802/afst.1760

[1] Bachmayr, Annette; Harbater, David; Hartmann, Julia; Wibmer, Michael Differential embedding problems over complex function fields, Doc. Math., Volume 23 (2018), pp. 241-291 | DOI | MR

[2] Bolibruch, Andre A. On isomonodromic deformations of Fuchsian systems, J. Dyn. Control Syst., Volume 3 (1997) no. 4, pp. 589-604 | DOI | MR

[3] Di Vizio, Lucia; Zhang, Changgui On q-summation and confluence, Ann. Inst. Fourier, Volume 59 (2009) no. 1, pp. 347-392 | DOI | MR | Numdam | Zbl

[4] Dreyfus, Thomas Building meromorphic solutions of q-difference equations using a Borel–Laplace summation, Int. Math. Res. Not., Volume 2015 (2014) no. 15, pp. 6562-6587 | DOI | MR

[5] Dreyfus, Thomas Confluence of meromorphic solutions of q-difference equations, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 431-507 | DOI | MR | Numdam

[6] Dreyfus, Thomas Isomonodromic deformation of q-difference equations and confluence, Proc. Am. Math. Soc., Volume 145 (2017) no. 3, pp. 1109-1120 | DOI | MR

[7] Fuchs, Richard Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann., Volume 63 (1907) no. 3, pp. 301-321 | DOI | MR

[8] Grammaticos, Basil; Ramani, Alfred; Papageorgiou, Vassilios Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., Volume 67 (1991) no. 14, p. 1825 | DOI

[9] Hinkkanen, Aimo; Laine, Ilpo The meromorphic nature of the sixth Painlevé transcendents, J. Anal. Math., Volume 94 (2004) no. 1, pp. 319-342 | DOI

[10] Hörmander, Lars The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985

[11] Jimbo, Michio; Miwa, Tetsuji Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II, Physica D, Volume 2 (1981) no. 3, pp. 407-448 | DOI

[12] Jimbo, Michio; Sakai, Hidetaka A q-analog of the sixth Painlevé equation, Lett. Math. Phys., Volume 38 (1996) no. 2, pp. 145-154 | DOI | Zbl

[13] Joshi, Nalini; Kruskal, Martin D. A direct proof that solutions of the six Painlevé equations have no movable singularities except poles, Stud. Appl. Math., Volume 93 (1994) no. 3, pp. 187-207 | DOI

[14] Kajiwara, Kenji; Noumi, Masatoshi; Yamada, Yasuhiko Geometric aspects of Painlevé equations, J. Phys. A. Math. Theor., Volume 50 (2017) no. 7, p. 073001 | DOI | Zbl

[15] Khavinson, Dmitry Holomorphic partial differential equations and classical potential theory, Departamento de análisis matemático. Universidad de la Laguna, 1996 | MR

[16] Loray, Frank Sur les théoremes I et II de Painlevé, Geometry and Dynamics, International conference in honnour of the 60th Anniversary of Alberto Verjovsky, 2005, Cuernavaca, Mexico. (Contemporary Mathematics), Volume 389, American Mathematical Society (2005), pp. 165-190 | MR

[17] Loray, Frank Isomonodromic deformation of Lamé connections, Painlevé VI equation and Okamoto symmetry, Izv. Math., Volume 80 (2016) no. 1, p. 113 | DOI

[18] Mano, Toshiyuki Asymptotic behaviour around a boundary point of the q-Painlevé VI equation and its connection problem, Nonlinearity, Volume 23 (2010) no. 7, p. 1585 | DOI | MR | Zbl

[19] Ohyama, Yousuke Analytic solutions to the sixth q-Painlevé equation around the origin, RIMS Kôkyûroku Bessatsu, Volume B13 (2009), pp. 45-52 | MR | Zbl

[20] Okamoto, Kazuo Studies on the Painlevé equations, Ann. Mat. Pura Appl., Volume 146 (1986) no. 1, pp. 337-381 | DOI

[21] Praagman, Cornelis Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems, J. Reine Angew. Math., Volume 369 (1986), pp. 101-109 | MR | Zbl

[22] Ramis, Jean-Pierre; Sauloy, Jacques; Zhang, Changgui Local analytic classification of q-difference equations, Astérisque, 355, Société Mathématique de France, 2013, vi+151 pages

[23] Sakai, Hidetaka Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 165-229 | DOI | MR

[24] Sauloy, Jacques Systèmes aux q-différences singuliers réguliers : classification, matrice de connexion et monodromie, Ann. Inst. Fourier, Volume 50 (2000) no. 4, pp. 1021-1071 | Zbl | DOI | MR | Numdam

[25] Zhang, Changgui Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques: théorie générale et exemples, Differential equations and the Stokes phenomenon, World Scientific, 2002, pp. 309-329 | DOI | MR | Zbl

Cité par Sources :