A Nonvanishing Conjecture for Cotangent Bundles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 5, pp. 855-892

In this paper we study the positivity of the cotangent bundle of projective manifolds. We conjecture that the cotangent bundle is pseudoeffective if and only the manifold has non-zero symmetric differentials. We confirm this conjecture for most projective surfaces that are not of general type.

Dans ce papier nous étudions la positivité du fibré cotangent des variétés projective lisses. Nous conjecturons que le fibré cotangent est pseudoeffectif si et seulement si la variété possède des formes holomorphes symétriques non-nulles. Nous montrons cette conjecture pour la plupart des surfaces projectives lisses qui ne sont pas de type général.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1756
Classification : 14J32, 37F75, 14E30
Keywords: MMP, minimal models, positivity of vector bundles, nonvanishing conjecture, symmetric differentials

Höring, Andreas 1 ; Peternell, Thomas 2

1 Université Côte d’Azur, CNRS, LJAD, France, Institut universitaire de France
2 Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_5_855_0,
     author = {H\"oring, Andreas and Peternell, Thomas},
     title = {A {Nonvanishing} {Conjecture} for {Cotangent} {Bundles}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {855--892},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {5},
     doi = {10.5802/afst.1756},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1756/}
}
TY  - JOUR
AU  - Höring, Andreas
AU  - Peternell, Thomas
TI  - A Nonvanishing Conjecture for Cotangent Bundles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 855
EP  - 892
VL  - 32
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1756/
DO  - 10.5802/afst.1756
LA  - en
ID  - AFST_2023_6_32_5_855_0
ER  - 
%0 Journal Article
%A Höring, Andreas
%A Peternell, Thomas
%T A Nonvanishing Conjecture for Cotangent Bundles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 855-892
%V 32
%N 5
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1756/
%R 10.5802/afst.1756
%G en
%F AFST_2023_6_32_5_855_0
Höring, Andreas; Peternell, Thomas. A Nonvanishing Conjecture for Cotangent Bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 5, pp. 855-892. doi: 10.5802/afst.1756

[1] Ancona, Vincenzo; Tomassini, Giuseppe Modifications analytiques, Lecture Notes in Mathematics, 943, Springer, 1982, iv+120 pages | MR | DOI

[2] Andreatta, Marco; Wiśniewski, Jarosław A. A view on contractions of higher-dimensional varieties, Algebraic geometry—Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 153-183 | MR | DOI | Zbl

[3] Anella, Fabrizio Rational curves on fibered varieties, Math. Z., Volume 298 (2021) no. 3-4, pp. 1097-1111 | DOI | MR | Zbl

[4] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | MR | DOI

[5] Bauer, Thomas A simple proof for the existence of Zariski decompositions on surfaces, J. Algebr. Geom., Volume 18 (2009) no. 4, pp. 789-793 | DOI | MR

[6] Bignalet-Cazalet, Rémi Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité, Ph. D. Thesis, Institut de Mathématiques de Bourgogne (Dijon) (2018)

[7] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[8] Boucksom, Sébastien Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | MR | Numdam | Zbl

[9] Boucksom, Sébastien; Demailly, Jean-Pierre; Păun, Mihai; Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013), pp. 201-248 | DOI

[10] Brotbek, Damian Hyperbolicity related problems for complete intersection varieties, Compos. Math., Volume 150 (2014) no. 3, pp. 369-395 | DOI | MR | Zbl

[11] Bruin, Nils; Thomas, Jordan; Varilly-Alvarado, Anthony Explicit computation of symmetric differentials and its application to quasi-hyperbolicity, Algebra Number Theory, Volume 16 (2022) no. 6, pp. 1377-1405 | DOI

[12] Brunebarbe, Yohan; Klingler, Bruno; Totaro, Burt Symmetric differentials and the fundamental group, Duke Math. J., Volume 162 (2013) no. 14, pp. 2797-2813 | DOI | MR

[13] Brunella, Marco A positivity property for foliations on compact Kähler manifolds, Int. J. Math., Volume 17 (2006) no. 1, pp. 35-43 | DOI | MR

[14] Campana, Frédéric Negativity of compact curves in infinite covers of projective surfaces, J. Algebr. Geom., Volume 7 (1998) no. 4, pp. 673-693 | MR

[15] Campana, Frédéric Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | MR | DOI | Numdam

[16] Campana, Frédéric Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Volume 10 (2011) no. 4, pp. 809-934 | Zbl | DOI | MR

[17] Campana, Frédéric; Demailly, Jean-Pierre; Peternell, Thomas Rationally connected manifolds and semipositivity of the Ricci curvature, Recent advances in algebraic geometry (London Mathematical Society Lecture Note Series), Volume 417, Cambridge University Press, 2015, pp. 71-91 | MR | DOI | Zbl

[18] Cox, David A.; Zucker, Steven Intersection numbers of sections of elliptic surfaces, Invent. Math., Volume 53 (1979) no. 1, pp. 1-44 | DOI | MR

[19] Debarre, Olivier Higher-dimensional algebraic geometry, Universitext, Springer, 2001, xiv+233 pages | MR

[20] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl

[21] Druel, Stéphane A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Invent. Math., Volume 211 (2018) no. 1, pp. 245-296 | DOI | MR | Zbl

[22] Farkas, Hershel M.; Kra, Irwin Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1980, xi+337 pages | MR | DOI

[23] Gachet, Cécile Positivity of the cotangent sheaf of singular Calabi–Yau varieties, Math. Res. Lett. (2022) no. 2, pp. 339-371 | DOI | MR

[24] Graber, Tom; Harris, Joe; Starr, Jason Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, p. 57-67 (electronic) | MR | DOI

[25] Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J.; Peternell, Thomas Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | MR | Numdam

[26] Greb, Daniel; Kebekus, Stefan; Peternell, Thomas Etale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | MR

[27] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | DOI

[28] Höring, Andreas; Liu, Jie; Shao, Feng Examples of Fano manifolds with non-pseudoeffective tangent bundle, J. Lond. Math. Soc., Volume 106 (2022) no. 1, pp. 27-59 | DOI | MR

[29] Höring, Andreas; Peternell, Thomas Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR

[30] Kollár, János Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996, viii+320 pages | MR | DOI

[31] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti) | MR | DOI

[32] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | MR

[33] Micali, Artibano Sur les algèbres universelles, Ann. Inst. Fourier, Volume 14 (1964) no. 2, pp. 33-87 | MR | DOI | Numdam

[34] Miranda, Rick The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, 1989, vi+108 pages | MR

[35] Nakayama, Noboru Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | MR

[36] Sakai, Fumio Symmetric powers of the cotangent bundle and classification of algebraic varieties, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) (Lecture Notes in Mathematics), Volume 732, Springer, 1979, pp. 545-563 | MR | DOI | Zbl

[37] Serrano, Fernando Isotrivial fibred surfaces, Ann. Mat. Pura Appl., Volume 171 (1996), pp. 63-81 | DOI | MR | Zbl

[38] Ueno, Kenji Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, 439, Springer, 1975, xix+278 pages (notes written in collaboration with P. Cherenack) | MR | DOI

Cité par Sources :