Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 4, pp. 655-725

We introduce the Kashiwara–Vergne bigraded Lie algebra associated with a finite abelian group and give its mould theoretic reformulation. By using the mould theory, we show that it includes Goncharov’s dihedral Lie algebra, which generalizes the result of Raphael and Schneps.

Nous introduisons l’algèbre de Lie bi-graduée de Kashiwara–Vergne associée à un groupe fini abélien, et donnons sa reformulation moule-théorique. En utilisant la théorie des moules, nous démontrons que celle-ci inclut l’algèbre de Lie diédrale de Goncharov, généralisant ainsi un résultat de Raphael et Schneps.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1749
Classification : 17B05, 11M32, 16S30, 17B40
Keywords: Kashiwara-Verge Lie algebra, dihedral Lie algebra, mould theory

Furusho, Hidekazu 1 ; Komiyama, Nao 2

1 Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
2 Department of Mathematics, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_4_655_0,
     author = {Furusho, Hidekazu and Komiyama, Nao},
     title = {Kashiwara{\textendash}Vergne and dihedral bigraded {Lie} algebras in mould theory},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {655--725},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {4},
     doi = {10.5802/afst.1749},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1749/}
}
TY  - JOUR
AU  - Furusho, Hidekazu
AU  - Komiyama, Nao
TI  - Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 655
EP  - 725
VL  - 32
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1749/
DO  - 10.5802/afst.1749
LA  - en
ID  - AFST_2023_6_32_4_655_0
ER  - 
%0 Journal Article
%A Furusho, Hidekazu
%A Komiyama, Nao
%T Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 655-725
%V 32
%N 4
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1749/
%R 10.5802/afst.1749
%G en
%F AFST_2023_6_32_4_655_0
Furusho, Hidekazu; Komiyama, Nao. Kashiwara–Vergne and dihedral bigraded Lie algebras in mould theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 4, pp. 655-725. doi: 10.5802/afst.1749

[1] Alekseev, Anton; Enriquez, Benjamin; Torossian, Charles Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 112 (2010) no. 112, pp. 143-189 | Zbl | DOI | MR | Numdam

[2] Alekseev, Anton; Kawazumi, Nariya; Kuno, Yusuke; Naef, Florian The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem, Adv. Math., Volume 326 (2018), pp. 1-53 | DOI | MR | Zbl

[3] Alekseev, Anton; Torossian, Charles The Kashiwara–Vergne conjecture and Drinfeld’s associators, Ann. Math., Volume 175 (2012) no. 2, pp. 415-463 | DOI | MR | Zbl

[4] Arakawa, Tsuneo; Kaneko, Masanobu On multiple L-values, J. Math. Soc. Japan, Volume 56 (2004) no. 4, pp. 967-991 | Zbl

[5] Cresson, Jacky Calcul moulien, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 2, pp. 307-395 | DOI | MR | Numdam | Zbl

[6] Drinfelʼd, Vladimir G. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( ¯/), Leningr. Math. J., Volume 2 (1991) no. 4, pp. 829-860

[7] Ecalle, Jean Les fonctions résurgentes. Tome I et II, Publications Mathématiques d’Orsay, 81, Université de Paris-Sud, 1981

[8] Ecalle, Jean ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 2, pp. 411-478 | DOI | Numdam | Zbl

[9] Ecalle, Jean The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles, Asymptotics in dynamics, geometry and PDEs. Generalized Borel summation. Vol. II (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 12, Edizioni della Normale, 2011, pp. 27-211 | MR | Zbl

[10] Enriquez, Benjamin Quasi-reflection algebras and cyclotomic associators, Sel. Math., New Ser., Volume 13 (2007) no. 3, pp. 391-463 | DOI | MR | Zbl

[11] Furusho, Hidekazu Around associators, Automorphic forms and Galois representations (London Mathematical Society Lecture Note Series), Volume 415, Cambridge University Press, 2014, pp. 105-117 | DOI | MR | Zbl

[12] Goncharov, Alexander B. The dihedral Lie algebras and Galois symmetries of π 1 (l) ( 1 -({0,}μ N )), Duke Math. J., Volume 110 (2001) no. 3, pp. 397-487 | DOI | MR

[13] Goncharov, Alexander B. Multiple polylogarithms and mixed Tate motives (2001) | arXiv

[14] Maassarani, Mohamad Bigraded Lie algebras related to multiple zeta values, Publ. Res. Inst. Math. Sci., Volume 58 (2022) no. 4, pp. 757-791 | DOI | MR | Zbl

[15] Racinet, Georges Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfeld, Ph. D. Thesis, Université de Picardie Jules Verne (2000)

[16] Racinet, Georges Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math., Inst. Hautes Étud. Sci., Volume 95 (2002), pp. 185-231 | DOI | MR | Numdam | Zbl

[17] Raphael, Elise; Schneps, Leila On linearised and elliptic versions of the Kashiwara-Vergne Lie algebra (2017) | arXiv

[18] Salerno, Adriana; Schneps, Leila Mould theory and the double shuffle Lie algebra structure, Periods in quantum field theory and arithmetic (Springer Proceedings in Mathematics & Statistics), Volume 314, Springer, 2020, pp. 399-430 | DOI | MR | Zbl

[19] Sauzin, David Mould expansions for the saddle-node and resurgence monomials, Renormalization and Galois theories (IRMA Lectures in Mathematics and Theoretical Physics), Volume 15, European Mathematical Society, 2009, pp. 83-163 | DOI | MR | Zbl

[20] Schneps, Leila Double shuffle and Kashiwara-Vergne Lie algebras, J. Algebra, Volume 367 (2012), pp. 54-74 | DOI | MR | Zbl

[21] Schneps, Leila ARI, GARI, ZIG and ZAG: An introduction to Ecalle’s theory of multiple zeta values (2015) | arXiv

Cité par Sources :