Infinite dimensional representations of orthogonal groups of quadratic forms with finite index
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 2, pp. 371-396

We study representations GH where G is either a simple Lie group with real rank at least 2 or an infinite dimensional orthogonal group of some quadratic form of finite index at least 2 and H is such an orthogonal group as well. The real, complex and quaternionic cases are considered. Contrarily to the rank one case, we show that there is no exotic such representations and we classify these representations.

On the way, we make a detour and prove that the projective orthogonal groups PO K (p,) or their orthochronous component (where K denotes the real, complex or quaternionic numbers) are Polish groups that are topologically simple but not abstractly simple.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1740

Duchesne, Bruno 1

1 Institut Élie Cartan, UMR 7502, Université de Lorraine et CNRS, Nancy, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_2_371_0,
     author = {Duchesne, Bruno},
     title = {Infinite dimensional representations of orthogonal groups of quadratic forms with finite index},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {371--396},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {2},
     doi = {10.5802/afst.1740},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1740/}
}
TY  - JOUR
AU  - Duchesne, Bruno
TI  - Infinite dimensional representations of orthogonal groups of quadratic forms with finite index
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 371
EP  - 396
VL  - 32
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1740/
DO  - 10.5802/afst.1740
LA  - en
ID  - AFST_2023_6_32_2_371_0
ER  - 
%0 Journal Article
%A Duchesne, Bruno
%T Infinite dimensional representations of orthogonal groups of quadratic forms with finite index
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 371-396
%V 32
%N 2
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1740/
%R 10.5802/afst.1740
%G en
%F AFST_2023_6_32_2_371_0
Duchesne, Bruno. Infinite dimensional representations of orthogonal groups of quadratic forms with finite index. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 2, pp. 371-396. doi: 10.5802/afst.1740

[1] Balser, Andreas; Lytchak, Alexander Centers of convex subsets of buildings, Ann. Global Anal. Geom., Volume 28 (2005) no. 2, pp. 201-209 | Zbl | MR | DOI

[2] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR

[3] Burger, Marc; Iozzi, Alessandra; Monod, Nicolas Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. (2005) no. 22, pp. 1331-1369 | Zbl | MR | DOI

[4] Cantat, Serge Sur les groupes de transformations birationnelles des surfaces, Ann. Math., Volume 174 (2011) no. 1, pp. 299-340 | Zbl | MR | DOI

[5] Caprace, Pierre-Emmanuel Amenable groups and Hadamard spaces with a totally disconnected isometry group, Comment. Math. Helv., Volume 84 (2009) no. 2, pp. 437-455 | Zbl | MR | DOI

[6] Caprace, Pierre-Emmanuel; Lytchak, Alexander At infinity of finite-dimensional CAT(0) spaces, Math. Ann., Volume 346 (2010) no. 1, pp. 1-21 | Zbl | MR | DOI

[7] Caprace, Pierre-Emmanuel; Monod, Nicolas Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol., Volume 2 (2009) no. 4, pp. 701-746 | Zbl | MR | DOI

[8] Caprace, Pierre-Emmanuel; Monod, Nicolas Isometry groups of non-positively curved spaces: structure theory, J. Topol., Volume 2 (2009) no. 4, pp. 661-700 | Zbl | MR | DOI

[9] Caprace, Pierre-Emmanuel; Monod, Nicolas Fixed points and amenability in non-positive curvature, Math. Ann., Volume 356 (2013) no. 4, pp. 1303-1337 | Zbl | MR | DOI

[10] Cuevas, Carlos Ramos On Convex Subcomplexes of Spherical Buildings and Tits Center Conjecture, Ph. D. Thesis, Ludwig-Maximilians-Universität München (2009) http://nbn-resolving.de/urn:nbn:de:bvb:19-110050

[11] Delzant, Thomas; Py, Pierre Kähler groups, real hyperbolic spaces and the Cremona group, Compos. Math., Volume 148 (2012) no. 1, pp. 153-184 | Zbl | MR | DOI

[12] Dieudonné, Jean Les déterminants sur un corps non commutatif, Bull. Soc. Math. Fr., Volume 71 (1943), pp. 27-45 | Zbl | Numdam | DOI

[13] Duchesne, Bruno Infinite-dimensional nonpositively curved symmetric spaces of finite rank, Int. Math. Res. Not., Volume 2013 (2013) no. 7, pp. 1578-1627 | Zbl | DOI | MR

[14] Duchesne, Bruno Infinite-dimensional Riemannian symmetric spaces with fixed-sign curvature operator, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 211-244 | Numdam | MR | DOI | Zbl

[15] Duchesne, Bruno Superrigidity in infinite dimension and finite rank via harmonic maps, Groups Geom. Dyn., Volume 9 (2015) no. 1, pp. 133-148 | Zbl | MR | DOI

[16] Duchesne, Bruno; Glasner, Yair; Lazarovich, Nir; Lécureux, Jean Geometric density for invariant random subgroups of groups acting on CAT(0) spaces, Geom. Dedicata, Volume 175 (2015), pp. 249-256 | Zbl | MR | DOI

[17] Duchesne, Bruno; Lecureux, Jean; Pozzetti, Maria Beatrice Boundary maps and maximal representations on infinite dimensional Hermitian symmetric spaces (2018) (https://arxiv.org/abs/1810.10208)

[18] de la Harpe, Pierre Classical Banach–Lie algebras and Banach–Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, 285, Springer, 1972, iii+160 pages | Numdam | DOI | MR

[19] Ismagilov, Rais S. Unitary representations of the Lorentz group in a space with indefinite metric, Sov. Math., Dokl., Volume 5 (1965), pp. 1217-1219 | MR

[20] Kechris, Alexander S. Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, 1995, xviii+402 pages | DOI | MR

[21] Kleiner, Bruce The local structure of length spaces with curvature bounded above, Math. Z., Volume 231 (1999) no. 3, pp. 409-456 | Zbl | MR | DOI

[22] Knapp, Anthony W. Representation theory of semisimple groups. An overview based on examples, Princeton Landmarks in Mathematics, Princeton University Press, 2001

[23] Lang, Serge Fundamentals of differential geometry, Graduate Texts in Mathematics, 191, Springer, 1999, xviii+535 pages | DOI | MR

[24] Leeb, Bernhard A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, 326, Universität Bonn Mathematisches Institut, 2000, ii+42 pages | MR

[25] Monod, Nicolas Superrigidity for irreducible lattices and geometric splitting, J. Am. Math. Soc., Volume 19 (2006) no. 4, pp. 781-814 | Zbl | MR | DOI

[26] Monod, Nicolas Notes on functions of hyperbolic type (2018) (https://arxiv.org/abs/1807.04157)

[27] Monod, Nicolas; Py, Pierre An exotic deformation of the hyperbolic space, Am. J. Math., Volume 136 (2014) no. 5, pp. 1249-1299 | Zbl | MR | DOI

[28] Monod, Nicolas; Py, Pierre Self-representations of the Möbius group, Ann. Henri Lebesgue, Volume 2 (2019), pp. 259-280 | Zbl | Numdam | DOI

[29] Morris, Dave Witte Introduction to arithmetic groups, Deductive Press, 2015, xii+475 pages | MR

[30] Mostow, George D. Some new decomposition theorems for semi-simple groups, Mem. Am. Math. Soc., Volume 14 (1955), pp. 31-54 | Zbl | MR

[31] Mühlherr, Bernhard; Tits, Jacques The center conjecture for non-exceptional buildings, J. Algebra, Volume 300 (2006) no. 2, pp. 687-706 | Zbl | MR | DOI

[32] Naĭmark, Mark A. Unitary representations of the Lorentz group in the space Π k , Sov. Math., Dokl., Volume 4 (1963), pp. 1508-1511

[33] Ol’shanskiĭ, Grigoriĭ I. Unitary representations of the infinite-dimensional classical groups U(p,), SO 0 (p,), Sp(p,), and of the corresponding motion groups, Funkts. Anal. Prilozh., Volume 12 (1978) no. 3, pp. 32-44 | MR

[34] Petersen, Peter Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages | MR

[35] Py, Pierre; Sánchez, Arturo Hyperbolic spaces, principal series and O(2,) (2018) (https://arxiv.org/abs/1812.03782)

[36] Sasvári, Zoltán New proof of Naimark’s theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces, Volume 109, 1990 no. 2, pp. 153-156 | Zbl | MR

[37] Serre, Jean-Pierre Complète réductibilité, Bourbaki seminar. Volume 2003/2004. Exposes 924–937 (Astérisque), Volume 299, Société Mathématique de France, 2005, pp. 195-217 (Exp. No. 932) | Zbl | Numdam

[38] Tits, Jacques Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, 386, Springer, 1974, x+299 pages | MR

Cité par Sources :