Minimal hypersurfaces and geometric inequalities
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 179-201

In this expository paper, we discuss some of the main geometric inequalities for minimal hypersurfaces. These include the classical monotonicity formula, the Alexander–Osserman conjecture, the isoperimetric inequality for minimal surfaces, and the Michael–Simon Sobolev inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1734

Brendle, Simon 1

1 Department of Mathematics, Columbia University, New York NY 10027, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_1_179_0,
     author = {Brendle, Simon},
     title = {Minimal hypersurfaces and geometric inequalities},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {179--201},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     doi = {10.5802/afst.1734},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1734/}
}
TY  - JOUR
AU  - Brendle, Simon
TI  - Minimal hypersurfaces and geometric inequalities
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 179
EP  - 201
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1734/
DO  - 10.5802/afst.1734
LA  - en
ID  - AFST_2023_6_32_1_179_0
ER  - 
%0 Journal Article
%A Brendle, Simon
%T Minimal hypersurfaces and geometric inequalities
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 179-201
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1734/
%R 10.5802/afst.1734
%G en
%F AFST_2023_6_32_1_179_0
Brendle, Simon. Minimal hypersurfaces and geometric inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 179-201. doi: 10.5802/afst.1734

[1] Alexander, Herbert; Osserman, Robert Area bounds for various classes of surfaces, Am. J. Math., Volume 97 (1975), pp. 753-769 | MR | DOI | Zbl

[2] Allard, William K. On the first variation of a varifold, Ann. Math., Volume 95 (1972), pp. 417-491 | Zbl | MR | DOI

[3] Almgren, Frederick J. Jr. Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. Math., Volume 84 (1966), pp. 277-292 | DOI | MR | Zbl

[4] Almgren, Frederick J. Jr. Optimal isoperimetric inequalities, Indiana Univ. Math. J., Volume 35 (1986), pp. 451-547 | MR | DOI

[5] Aubin, Thierry Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., Volume 11 (1976), pp. 573-598 | Zbl

[6] Bakry, Dominique L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory, École d’été de probabilités de St.-Flour (Lecture Notes in Mathematics), Volume 1581, Springer, 1994, pp. 1-114 | Zbl

[7] Bakry, Dominique; Émery, Michel Diffusions hypercontractives, Séminaire de probabilités XIX (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | MR | Zbl | Numdam

[8] Bakry, Dominique; Ledoux, Michel Lévy-Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math., Volume 123 (1996) no. 2, pp. 259-281 | DOI | Zbl

[9] Barthe, Franck; Cordero-Erausquin, Dario Inverse Brascamp–Lieb inequalities along the heat equation, Geometric aspects of functional analysis (Lecture Notes in Mathematics), Volume 1850, Springer, 2004, pp. 65-71 | Zbl | MR | DOI

[10] Berndtsson, Bo Superforms, supercurrents, minimal manifolds and Riemannian geometry, Arnold Math. J., Volume 5 (2019) no. 4, pp. 501-532 | Zbl | MR | DOI

[11] Bobkov, Sergey G.; Ledoux, Michel From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., Volume 10 (2000) no. 5, p. 1082-1052 | Zbl | MR

[12] Borell, Christer The Brunn–Minkowski inequality in Gauss space, Invent. Math., Volume 30 (1975), pp. 207-216 | DOI | Zbl | MR

[13] Borell, Christer Inequalities of the Brunn–Minkowski type for Gaussian measures, Probab. Theory Relat. Fields, Volume 140 (2008) no. 1-2, pp. 195-205 | Zbl | MR | DOI

[14] Brendle, Simon A sharp bound for the area of minimal surfaces in the unit ball, Geom. Funct. Anal., Volume 22 (2012) no. 3, pp. 621-626 | Zbl | MR | DOI

[15] Brendle, Simon Embedded minimal tori in S 3 and the Lawson conjecture, Acta Math., Volume 211 (2013) no. 2, pp. 177-190 | Zbl | MR | DOI

[16] Brendle, Simon Minimal surfaces in S 3 : a survey of recent results, Bull. Math. Sci., Volume 3 (2013) no. 1, pp. 133-171 | Zbl | MR | DOI

[17] Brendle, Simon The isoperimetric inequality for a minimal submanifold in Euclidean space, J. Am. Math. Soc., Volume 34 (2021) no. 2, pp. 595-603 | MR | Zbl | DOI

[18] Brendle, Simon The logarithmic Sobolev inequality for a submanifold in Euclidean space, Commun. Pure Appl. Math., Volume 75 (2022) no. 3, pp. 449-454 | DOI | MR | Zbl

[19] Brendle, Simon Sobolev inequalities in manifolds with nonnegative curvature, Commun. Pure Appl. Math. (2022) (https://doi.org/10.1002/cpa.22070) | DOI

[20] Brendle, Simon; Hung, Pei-Ken Area bounds for minimal surfaces that pass through a prescribed point in a ball, Geom. Funct. Anal., Volume 27 (2017) no. 2, pp. 235-239 | Zbl | MR | DOI

[21] Cabré, Xavier Equacions en derivades parcials, geometria i control estocàstic, Butll. Soc. Catalana Mat., Volume 15 (2000) no. 1, pp. 7-27

[22] Cabré, Xavier Elliptic PDE’s in probability and geometry. Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., Volume 20 (2008) no. 3, pp. 425-457 | Zbl | MR | DOI

[23] Carleman, Torsten Zur Theorie der Minimalflächen, Math. Z., Volume 9 (1921), pp. 154-160 | Zbl | DOI

[24] Castillon, Philippe Submanifolds, isoperimetric inequalities and optimal transportation, J. Funct. Anal., Volume 259 (2010) no. 1, pp. 79-103 | MR | Zbl | DOI

[25] Cavalletti, Fabio; Mondino, Andrea Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., Volume 208 (2017) no. 3, pp. 803-849 | Zbl | MR | DOI

[26] Choe, Jaigyoung The isoperimetric inequality for a minimal surface with radially connected boundary, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (1990) no. 4, pp. 583-593 | Zbl | Numdam | MR

[27] Colding, Tobias H.; Minicozzi, William P. II Generic mean curvature flow I: generic singularities, Ann. Math., Volume 175 (2012) no. 2, pp. 755-833 | Zbl | MR | DOI

[28] Colding, Tobias Holck; Minicozzi, William P. II A course in minimal surfaces, Graduate Studies in Mathematics, 121, American Mathematical Society, 2011

[29] Cordero-Erausquin, Dario Some applications of mass transport to Gaussian-type inequalities, Arch. Ration. Mech. Anal., Volume 161 (2002) no. 3, pp. 257-269 | Zbl | MR | DOI

[30] Cordero-Erausquin, Dario; McCann, Robert J.; Schmuckenschläger, Michael A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., Volume 146 (2001) no. 2, pp. 219-257 | Zbl | MR | DOI

[31] Dierkes, Ulrich; Hildebrandt, Stefan; Tromba, Anthony J. Minimal surfaces, Grundlehren der Mathematischen Wissenschaften, 339, Springer, 2010

[32] Ecker, Klaus Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. Reine Angew. Math., Volume 522 (2000), pp. 105-118 | Zbl | MR

[33] Ecker, Klaus Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser, 2004 | DOI

[34] Ekholm, Tobias; White, Brian; Wienholtz, Daniel Embeddedness of minimal surfaces with total boundary curvature at most 4π, Ann. Math., Volume 155 (2002), pp. 209-234 | Zbl | MR | DOI

[35] Federer, Herbert; Fleming, Wendell H. Normal and integral currents, Ann. Math., Volume 72 (1960), pp. 458-520 | MR | DOI

[36] Feinberg, Jerry M. The isoperimetric inequality for doubly-connected minimal surfaces in n , J. Anal. Math., Volume 32 (1977), pp. 249-278 | DOI | Zbl | MR

[37] Greene, Robert; Wu, Hung-Hsi C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 47-84 | Numdam | DOI | MR

[38] Gromov, Mikhael Filling Riemannian manifolds, J. Differ. Geom., Volume 18 (1983), pp. 1-147 | Zbl | MR

[39] Gromov, Mikhael Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999

[40] Gross, Leonard Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975), pp. 1061-1083 | DOI | MR

[41] Gross, Leonard Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms (Varenna, 1992) (Lecture Notes in Mathematics), Volume 1563, Springer, 1992, pp. 54-88 | Zbl | DOI

[42] Hsiung, Chuan-Chih Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. Math., Volume 73 (1961), pp. 213-220 | Zbl | MR | DOI

[43] Huisken, Gerhard Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom., Volume 31 (1990) no. 1, p. 285--299 | Zbl | MR

[44] Hurwitz, Adolf Sur quelques applications géométriques des séries de Fourier, Ann. Sci. Éc. Norm. Supér., Volume 19 (1902), pp. 357-408 | Numdam | DOI

[45] Klartag, Bo’az Needle decompositions in Riemannian geometry, Memoirs of the American Mathematical Society, 1180, American Mathematical Society, 2017

[46] Lawson, Herbert Blaine Jr. Complete minimal surfaces in S 3 , Ann. Math., Volume 92 (1970), pp. 335-374 | MR | DOI

[47] Ledoux, Michel Isoperimetry and Gaussian analysis, Lectures on probability theory and statistics. École d’été de probabilités de St.-Flour (Lecture Notes in Mathematics), Volume 1648, Springer, 1996, pp. 165-294 | Zbl | MR | DOI

[48] Ledoux, Michel Concentration of measure and logarithmic Sobolev inequalities, Séminaire de probabilités XXXIII (Lecture Notes in Mathematics), Volume 1709, Springer, 1999, pp. 120-216 | MR | DOI | Zbl | Numdam

[49] Li, Peter; Schoen, Richard; Yau, Shing-Tung On the isoperimetric inequality for minimal surfaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (1984), pp. 237-244 | Zbl | Numdam | MR

[50] Lyusternik, Lazarʼ A. Die Brunn–Minkowskische Ungleichung für beliebige meßbare Mengen, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 1935 (1935) no. 3, pp. 55-58

[51] Michael, James H.; Simon, Leon Sobolev and mean-value inequalities on generalized submanifolds of n , Commun. Pure Appl. Math., Volume 26 (1973), pp. 361-379 | MR | DOI

[52] Osserman, Robert; Schiffer, Menahem Doubly-connected minimal surfaces, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 285-307 | Zbl | MR | DOI

[53] Reid, William T. The isoperimetric inequality and associated boundary problems, J. Math. Mech., Volume 8 (1959), pp. 897-906 | Zbl | MR

[54] Simon, Leon Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Centre for Mathematical Analysis, 1983

[55] Stein, Elias M.; Shakarchi, Rami Real analysis: measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, 3, Princeton University Press, 2009 | DOI

[56] Stone, Andrew On the isoperimetric inequality on a minimal surface, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 4, pp. 369-391 | Zbl | MR | DOI

[57] Sudakov, Vladimir N.; Tsirelson, Boris S. Extremal properties of half-spaces for spherically invariant measures, J. Sov. Math., Volume 9 (1978), pp. 9-18 | DOI

[58] Talenti, Giorgio Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372 | Zbl | MR | DOI

[59] Topping, Peter Relating diameter and mean curvature for submanifolds in Euclidean space, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 539-546 | MR | DOI | Zbl

[60] Trudinger, Neil S. Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 11 (1994) no. 4, pp. 411-425 | Zbl | Numdam | MR | DOI

Cité par Sources :