We give a simple proof of a recent result due to Agostiniani, Fogagnolo and Mazzieri [1].
Nous donnons une preuve simple d’un résultat récent dû à Agostiniani, Fogagnolo and Mazzieri [1].
Accepté le :
Publié le :
Wang, Xiaodong 1
CC-BY 4.0
@article{AFST_2023_6_32_1_173_0,
author = {Wang, Xiaodong},
title = {Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative {Ricci} curvature},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {173--178},
year = {2023},
publisher = {Universit\'e Paul Sabatier, Toulouse},
volume = {Ser. 6, 32},
number = {1},
doi = {10.5802/afst.1733},
language = {en},
url = {https://www.numdam.org/articles/10.5802/afst.1733/}
}
TY - JOUR AU - Wang, Xiaodong TI - Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 173 EP - 178 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1733/ DO - 10.5802/afst.1733 LA - en ID - AFST_2023_6_32_1_173_0 ER -
%0 Journal Article %A Wang, Xiaodong %T Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 173-178 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://www.numdam.org/articles/10.5802/afst.1733/ %R 10.5802/afst.1733 %G en %F AFST_2023_6_32_1_173_0
Wang, Xiaodong. Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 173-178. doi: 10.5802/afst.1733
[1] Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math., Volume 222 (2020) no. 3, pp. 1033-1101 | MR | DOI | Zbl
[2] Vanishing sectional curvature on the boundary and a conjecture of Schroeder and Strake, Pac. J. Math., Volume 232 (2007) no. 2, pp. 283-287 | Zbl | MR | DOI
[3] A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 451-470 | Zbl | DOI | MR | Numdam
[4] Riemannian manifolds with compact boundary, Yokohama Math. J., Volume 29 (1981) no. 2, pp. 169-177 | Zbl | MR
[5] Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary, J. Math. Soc. Japan, Volume 35 (1983) no. 1, pp. 117-131 | Zbl | MR
[6] Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, 2016 | DOI
[7] Riemannian geometry, Translations of Mathematical Monographs, 149, American Mathematical Society, 1996 | DOI
Cité par Sources :





