On stability of rotational 2D binary Bose–Einstein condensates
[Sur la stabilité des condensats de Bose–Einstein 2D en rotation]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 81-124

We consider a two-dimensional nonlinear Schrödinger equation proposed in Physics to model rotational binary Bose–Einstein condensates. The nonlinearity is a logarithmic modification of the usual cubic nonlinearity. The presence of both the external confining potential and rotating frame makes it difficult to apply standard techniques to directly construct ground states, as we explain in an appendix. The goal of the present paper is to analyze the orbital stability of the set of energy minimizers under mass constraint, according to the relative strength of the confining potential compared to the angular frequency. The main novelty concerns the critical case where these two effects compensate exactly (lowest Landau Level): orbital stability is established by using techniques related to magnetic Schrödinger operators.

Nous considérons une équation de Schrödinger non linéaire en deux dimensions d’espace, introduite en physique pour modéliser les condensats de Bose–Einstein en rotation. La non-linéarité est une modification logarithmique du terme cubique habituel. Les présences conjuguées d’un potentiel confinant et d’un repère tournant font qu’il est difficile d’appliquer les techniques standard dans la construction d’états fondamentaux, comme expliqué en appendice. Le but de ce papier est d’analyser la stabilité orbitale de l’ensemble des minimiseurs d’énergie à masse fixée, selon la valeur relative de la force du potentiel confinant par rapport à la vitesse de rotation. La nouveauté principale concerne le cas critique où les deux effets se compensent exactement (niveau fondamental de Landau) : la stabilité orbitale est démontrée en utilisant des techniques en lien avec les opérateurs de Schrödinger magnétiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1730
Classification : 35Q55, 35A01
Keywords: Nonlinear Schrödinger equation, Bose–Einstein condensate, Harmonic potential, Rotation, Standing waves, Stability, Magnetic Schrödinger operators
Mots-clés : Équations de Schrödinger non linéaires, condensation de Bose–Einstein, potentiel harmonique, rotation, états stationnaires, stabilité, opérateur de Schrödinger magnétique

Carles, Rémi 1 ; Dinh, Van Duong 2 ; Hajaiej, Hichem 3

1 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, FRANCE
2 Laboratoire Paul Painlevé UMR 8524, Université de Lille CNRS, 59655 Villeneuve d’Asc, France and Department of Mathematics, HCMC University of Education, 280 An Duong Vuong, Ho Chi Minh, Vietnam
3 Department of Mathematics, California State University, Los Angeles, CA 90032
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_1_81_0,
     author = {Carles, R\'emi and Dinh, Van Duong and Hajaiej, Hichem},
     title = {On stability of rotational {2D} binary {Bose{\textendash}Einstein} condensates},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {81--124},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     doi = {10.5802/afst.1730},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1730/}
}
TY  - JOUR
AU  - Carles, Rémi
AU  - Dinh, Van Duong
AU  - Hajaiej, Hichem
TI  - On stability of rotational 2D binary Bose–Einstein condensates
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 81
EP  - 124
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1730/
DO  - 10.5802/afst.1730
LA  - en
ID  - AFST_2023_6_32_1_81_0
ER  - 
%0 Journal Article
%A Carles, Rémi
%A Dinh, Van Duong
%A Hajaiej, Hichem
%T On stability of rotational 2D binary Bose–Einstein condensates
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 81-124
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1730/
%R 10.5802/afst.1730
%G en
%F AFST_2023_6_32_1_81_0
Carles, Rémi; Dinh, Van Duong; Hajaiej, Hichem. On stability of rotational 2D binary Bose–Einstein condensates. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 81-124. doi: 10.5802/afst.1730

[1] Aftalion, Amandine Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67, Springer, 2006 | DOI

[2] Antonelli, Paolo; Carles, Rémi; Sparber, Christof On nonlinear Schrödinger-type equations with nonlinear damping, Int. Math. Res. Not. (2015) no. 3, pp. 740-762 | Zbl | MR | DOI

[3] Antonelli, Paolo; Marahrens, Daniel; Sparber, Christof On the Cauchy problem for nonlinear Schrödinger equations with rotation, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 3, pp. 703-715 | Zbl | MR | DOI

[4] Antonelli, Paolo; Sparber, Christof Global well-posedness for cubic NLS with nonlinear damping, Commun. Partial Differ. Equations, Volume 35 (2010) no. 12, pp. 2310-2328 | Zbl | MR | DOI

[5] Arbunich, Jack; Nenciu, Irina; Sparber, Christof Stability and instability properties of rotating Bose-Einstein condensates, Lett. Math. Phys., Volume 109 (2019) no. 6, pp. 1415-1432 | Zbl | MR | DOI

[6] Bao, Weizhu Ground states and dynamics of rotating Bose–Einstein condensates, Transport phenomena and kinetic theory (Modeling and Simulation in Science, Engineering and Technology), Birkhäuser, 2007, pp. 215-255 | Zbl | MR | DOI

[7] Bao, Weizhu; Wang, Hanquan; Markowich, Peter A. Ground, symmetric and central vortex states in rotating Bose–Einstein condensates, Commun. Math. Sci., Volume 3 (2005) no. 1, pp. 57-88 | Zbl | MR

[8] Basharat, Nyla; Hajaiej, Hichem; Hu, Yi; Zheng, Shijun Threshold for Blowup and Stability for Nonlinear Schrödinger Equation with Rotation (2020) (to appear in Ann. Henri Poincaré, https://doi.org/10.1007/s00023-022-01249-y)

[9] Berestycki, Henri; Gallouët, Thierry; Kavian, Otared Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Math. Acad. Sci. Paris, Volume 297 (1983) no. 5, pp. 307-310 | Zbl | MR

[10] Berestycki, Henri; Lions, Pierre-Louis Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983) no. 4, pp. 313-345 | Zbl | MR | DOI

[11] Boussaïd, Nabile; Hajaiej, Hichem; Ibrahim, Slim; Laurent, Michel On the global Cauchy problem for non-linear Schrödinger equation with magnetic potential (preprint)

[12] Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science, Volume 359 (2018) no. 6373, pp. 301-304 | MR | DOI

[13] Carles, Rémi Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 9 (2011) no. 4, pp. 937-964 | Zbl | DOI

[14] Carles, Rémi Sharp weights in the Cauchy problem for nonlinear Schrödinger equations with potential, Z. Angew. Math. Phys., Volume 66 (2015) no. 4, pp. 2087-2094 | Zbl | DOI

[15] Carles, Rémi; Drumond Silva, J. Large time behavior in nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 13 (2015) no. 2, pp. 443-460 | Zbl | DOI

[16] Carles, Rémi; Sparber, Christof On an intercritical log-modified nonlinear Schrödinger equation in two spatial dimensions (to appear in Proc. Am. Math. Soc., https://doi.org/10.1090/proc/15636)

[17] Cazenave, Thierry Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, 2003, xiv+323 pages | MR | DOI

[18] Esteban, Maria J.; Lions, Pierre-Louis Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations, Vol. I (Progress in Nonlinear Differential Equations and their Applications), Volume 1, Birkhäuser, 1989, pp. 401-449 | Zbl | MR

[19] Ferrier-Barbut, Igor; Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias; Pfau, Tilman Observation of Quantum Droplets in a Strongly Dipolar Bose Gas, Phys. Rev. Lett., Volume 116 (2016), p. 215301 | DOI

[20] Ferrier-Barbut, Igor; Schmitt, Matthias; Wenzel, Matthias; Kadau, Holger; Pfau, Tilman Liquid quantum droplets of ultracold magnetic atoms, J. Phys. B: At. Mol. Opt. Phys., Volume 49 (2016) no. 21, p. 214004 | DOI

[21] Fujiwara, Daisuke Remarks on the convergence of the Feynman path integrals, Duke Math. J., Volume 47 (1980) no. 3, pp. 559-600 | Zbl | MR

[22] Fukuizumi, Reika Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dyn. Syst., Volume 7 (2001) no. 3, pp. 525-544 | Zbl | MR | DOI

[23] Guo, Yujin; Seiringer, Robert On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys., Volume 104 (2014) no. 2, pp. 141-156 | Zbl | MR | DOI

[24] Hajaiej, Hichem; Stuart, Charles A. On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation, Adv. Nonlinear Stud., Volume 4 (2004) no. 4, pp. 469-501 | Zbl | MR | DOI

[25] Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias; Wink, Clarissa; Maier, Thomas; Ferrier-Barbut, Igor; Pfau, Tilman Observing the Rosensweig instability of a quantum ferrofluid, Nature, Volume 530 (2016) no. 7589, pp. 194-197 | DOI

[26] Kitada, Hitoshi On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 1, pp. 193-226 | Zbl | MR

[27] Lee, Tsung-Dao; Huang, Kerson; Yang, Chen N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev., Volume 106 (1957), pp. 1135-1145 | MR | DOI

[28] Lieb, Elliott H.; Loss, Michael Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001, xxii+346 pages | DOI | MR

[29] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | Zbl | MR

[30] Lions, Pierre-Louis The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223-283 | DOI | MR

[31] Ozawa, Tohru Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 3, pp. 403-408 | Zbl | MR | DOI

[32] Rauch, Jeffrey Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer, 1991 | DOI

[33] Reed, Michael; Simon, Barry Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978, xv+396 pages | MR

[34] Rose, Harvey A.; Weinstein, Michael I. On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, Volume 30 (1988) no. 1-2, pp. 207-218 | Zbl | MR | DOI

[35] Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman Self-bound droplets of a dilute magnetic quantum liquid, Nature, Volume 539 (2016) no. 7628, pp. 259-262 | DOI

[36] Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space, Phys. Rev. Lett., Volume 120 (2018), 235301 | DOI

[37] Tengstrand, M. Nilsson; Stürmer, P.; Karabulut, E. Ö.; Reimann, S. M. Rotating Binary Bose–Einstein Condensates and Vortex Clusters in Quantum Droplets, Phys. Rev. Lett., Volume 123 (2019), p. 160405 | DOI

[38] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1983) no. 4, pp. 567-576 | DOI | Zbl | MR

Cité par Sources :