Irrational pencils and Betti numbers
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 55-67

We study irrational pencils with isolated critical points on compact aspherical complex manifolds. We prove that if the set of critical points is nonempty, the homology of the kernel of the morphism induced by the pencil on fundamental groups is not finitely generated. This generalizes a result by Dimca, Papadima and Suciu. By considering self-products of the Cartwright–Steger surface, this allows us to build new examples of smooth projective varieties whose fundamental group has a non-finitely generated homology.

Nous étudions les pinceaux irrationnels à points critiques isolés sur les variétés complexes compactes et asphériques. Nous prouvons que si un tel pinceau possède au moins un point critique, alors l’homologie du noyau du morphisme induit entre groupes fondamentaux n’est pas de type fini. Ceci généralise un résultat de Dimca, Papadima et Suciu. En considérant le produit de plusieurs copies de la surface de Cartwright–Steger, ceci nous permet de donner de nouveaux exemples de variétés projectives lisses dont le groupe fondamental a un groupe d’homologie qui n’est pas de type fini.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1727

Nicolás, Francisco 1 ; Py, Pierre 1

1 IRMA, Université de Strasbourg, 67084 Strasbourg, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_1_55_0,
     author = {Nicol\'as, Francisco and Py, Pierre},
     title = {Irrational pencils and {Betti} numbers},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {55--67},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     doi = {10.5802/afst.1727},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1727/}
}
TY  - JOUR
AU  - Nicolás, Francisco
AU  - Py, Pierre
TI  - Irrational pencils and Betti numbers
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 55
EP  - 67
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1727/
DO  - 10.5802/afst.1727
LA  - en
ID  - AFST_2023_6_32_1_55_0
ER  - 
%0 Journal Article
%A Nicolás, Francisco
%A Py, Pierre
%T Irrational pencils and Betti numbers
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 55-67
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1727/
%R 10.5802/afst.1727
%G en
%F AFST_2023_6_32_1_55_0
Nicolás, Francisco; Py, Pierre. Irrational pencils and Betti numbers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 55-67. doi: 10.5802/afst.1727

[1] Bestvina, Mladen; Brady, Noel Morse theory and finiteness properties of groups, Invent. Math., Volume 129 (1997) no. 3, pp. 445-470 | MR | DOI | Zbl

[2] Bieri, Robert Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Queen Mary College, 1976 | MR

[3] Biswas, Indranil; Mj, Mahan; Pancholi, Dishant Homotopical height, Int. J. Math., Volume 25 (2014) no. 13, 1450123, 43 pages | Zbl | MR

[4] Brady, Noel Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. Lond. Math. Soc., Volume 60 (1999) no. 2, pp. 461-480 | DOI | MR | Zbl

[5] Bridson, Martin R.; Howie, James; Miller, Charles F. III; Short, Hamish The subgroups of direct products of surface groups, Geom. Dedicata, Volume 92 (2002), pp. 95-103 | Zbl | MR | DOI

[6] Bridson, Martin R.; Llosa Isenrich, Claudio Kodaira fibrations, Kähler groups, and finiteness properties, Trans. Am. Math. Soc., Volume 372 (2019) no. 8, pp. 5869-5890 | Zbl | DOI

[7] Brown, Kenneth S. Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI

[8] Cartwright, Donald I.; Koziarz, Vincent; Yeung, Sai-Kee On the Cartwright-Steger surface, J. Algebr. Geom., Volume 26 (2017) no. 4, pp. 655-689 | DOI | Zbl | MR

[9] Cartwright, Donald I.; Steger, Tim Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 1, pp. 1-2 | Zbl | MR | Numdam

[10] Dimca, Alexandru Singularities and topology of hypersurfaces, Universitext, Springer, 1992 | DOI

[11] Dimca, Alexandru; Papadima, Ştefan; Suciu, Alexander I. Non-finiteness properties of fundamental groups of smooth projective varieties, J. Reine Angew. Math., Volume 629 (2009), pp. 89-105 | MR | Zbl

[12] Ebeling, Wolfgang Functions of several complex variables and their singularities, Graduate Studies in Mathematics, 83, American Mathematical Society, 2007

[13] Kapovich, Michael On normal subgroups in the fundamental groups of complex surfaces (1998) (https://arxiv.org/abs/math/9808085)

[14] Kollár, János Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995 | DOI

[15] Koziarz, Vincent; Yeung, Sai-Kee Stability of the Albanese fibration on the Cartwright-Steger surface, Taiwanese J. Math., Volume 25 (2021) no. 2, pp. 251-256 | MR | Zbl

[16] Kropholler, Robert Almost hyperbolic groups with almost finitely presented subgroups (2018) (https://arxiv.org/abs/1802.01658)

[17] Llosa Isenrich, Claudio Branched covers of elliptic curves and Kähler groups with exotic finiteness properties, Ann. Inst. Fourier, Volume 69 (2019) no. 1, pp. 335-363 | Zbl | Numdam | MR | DOI

[18] Llosa Isenrich, Claudio Kähler groups and subdirect products of surface groups, Geom. Topol., Volume 24 (2020) no. 2, pp. 971-1017 | Zbl | MR | DOI

[19] Milnor, John W. Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, University of Tokyo Press, 1968

[20] Stallings, John R. A finitely presented group whose 3-dimensional integral homology is not finitely generated, Am. J. Math., Volume 85 (1963), pp. 541-543 | Zbl | MR | DOI

[21] Stover, Matthew On general type surfaces with q=1 and c 2 =3p g , Manuscr. Math., Volume 159 (2019) no. 1, pp. 171-182 | Zbl | MR | DOI

[22] Vidussi, Stefano The slope of surfaces with Albanese dimension one, Math. Proc. Camb. Philos. Soc., Volume 167 (2019) no. 2, pp. 355-360 | Zbl | MR | DOI

[23] Voisin, Claire Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés (Paris), 10, Société Mathématique de France, 2002

[24] Wall, Charles T. C. Finiteness conditions for CW-complexes. I, Ann. Math. (2), Volume 81 (1965), pp. 56-69 | DOI | Zbl | MR

Cité par Sources :