The flatness of the 𝒪-module of smooth functions and integral representation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 1-14

We give a proof of the well-known fact that the 𝒪-module of smooth functions is flat by means of residue theory and integral formulas. A variant of the proof gives a similar result for classes of functions of lower regularity. We also prove a Briançon–Skoda type theorem for ideals of the form a, where a is an ideal in 𝒪.

Nous donnons une preuve du fait bien connu que le 𝒪-module des fonctions lisses est plat au moyen de la théorie des résidus et des formules intègrales. Une variante de la preuve donne une résultat similaire pour classes de fonctions de moindre régularité. Nous prouvons également un théorème de type Briançon-Skoda pour des idéaux de la forme a, où a est un idéal dans 𝒪.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1725

Andersson, Mats 1

1 Department of Mathematics Chalmers University of Technology and University of Gothenburg S-412 96 Göteborg, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2023_6_32_1_1_0,
     author = {Andersson, Mats},
     title = {The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--14},
     year = {2023},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     doi = {10.5802/afst.1725},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1725/}
}
TY  - JOUR
AU  - Andersson, Mats
TI  - The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 1
EP  - 14
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1725/
DO  - 10.5802/afst.1725
LA  - en
ID  - AFST_2023_6_32_1_1_0
ER  - 
%0 Journal Article
%A Andersson, Mats
%T The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 1-14
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1725/
%R 10.5802/afst.1725
%G en
%F AFST_2023_6_32_1_1_0
Andersson, Mats. The flatness of the ${\protect \mathcal{O}}$-module of smooth functions and integral representation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 32 (2023) no. 1, pp. 1-14. doi: 10.5802/afst.1725

[1] Andersson, Mats Integral representation with weights I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | Zbl | MR | DOI

[2] Andersson, Mats Ideals of smooth functions and residue currents, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 76-88 | Zbl | MR | DOI

[3] Andersson, Mats Explicit versions of the Briançon-Skoda theorem with variations, Mich. Math. J., Volume 54 (2006) no. 2, pp. 361-373 | Zbl

[4] Andersson, Mats Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | Zbl | MR | DOI

[5] Andersson, Mats; Carlsson, Hasse H p -estimates of holomorphic division formulas, Pac. J. Math., Volume 173 (1996) no. 2, pp. 307-335 | MR | DOI | Zbl

[6] Andersson, Mats; Götmark, Elin Explicit representation of membership in polynomial ideals, Math. Ann., Volume 349 (2011) no. 2, pp. 345-365 | Zbl | MR | DOI

[7] Andersson, Mats; Samuelsson, Håkan; Sznajdman, Jacob On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier, Volume 60 (2010) no. 2, pp. 417-432 | Zbl | Numdam | DOI

[8] Andersson, Mats; Wulcan, Elizabeth Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | Zbl | Numdam | MR | DOI

[9] Berenstein, Carlos A.; Gay, Roger; Vidras, Alekos; Yger, Alain Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser, 1993 | DOI

[10] Berenstein, Carlos A.; Yger, Alain Effective Bezout identities in [z 1 ,...,z n ], Acta Math., Volume 166 (1991) no. 1-2, pp. 69-120 | Zbl | MR | DOI

[11] Berndtsson, Bo A formula for division and interpolation, Math. Ann., Volume 263 (1983), pp. 399-418 | MR | DOI | Zbl

[12] Berndtsson, Bo; Passare, Mikael Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal., Volume 84 (1989) no. 2, pp. 358-372 | Zbl | MR | DOI

[13] Huneke, Craig Uniform bounds in Noetherian rings, Invent. Math., Volume 107 (1992) no. 1, pp. 203-223 | Zbl | MR | DOI

[14] Malgrange, Bernard Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, 3, Oxford University Press, 1966

[15] Matsubara-Heo, Saiei-Jaeyeong Residue current approach to Ehrenpreis-Malgrange type theorem for linear differential equations with constant coefficients and commensurate time lags, Adv. Math., Volume 331 (2018), pp. 170-208 | Zbl | MR | DOI

[16] Mazzilli, Emmanuel Formules de division dans n , Mich. Math. J., Volume 51 (2003) no. 2, pp. 251-277 | Zbl | MR

[17] Passare, Mikael Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand., Volume 62 (1988) no. 1, pp. 75-152 | Zbl | MR | DOI

[18] Ruppenthal, Jean; Samuelsson Kalm, Håkan; Wulcan, Elizabeth Explicit Serre duality on complex spaces, Adv. Math., Volume 305 (2017), pp. 1320-1355 | Zbl | MR | DOI

[19] Skoda, Henri; Briancon, Joel Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de n ., C. R. Acad. Sci. Paris, Volume 278 (1974), pp. 949-951 | Zbl

Cité par Sources :