Data assimilation for geophysical fluids
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 767-793.

Data assimilation is the domain at the interface between observations and models, which makes it possible to identify the global structure of a geophysical system from a set of discrete space-time data. After recalling state-of-the-art data assimilation methods, the variational 4D-VAR algorithm and the dual variational 4D-PSAS algorithm, and sequential Kalman filters, we will present the Back and Forth Nudging (BFN) algorithm, and the Diffusive Back and Forth Nudging (DBFN) algorithm, which is a natural extension of the BFN to some particular diffusive models.

L’assimilation de données est l’ensemble des techniques qui permettent de combiner un modèle et des observations. Le but est ici d’identifier l’état d’un système géophysique à partir de données discrètes en temps et en espace. Après un rappel de l’état de l’art en assimilation de données (méthode variationnelle 4D-VAR et approche duale 4D-PSAS, filtres séquentiels de type Kalman), nous présentons l’algorithme du nudging direct et rétrograde, ainsi que son extension naturelle (le nudging direct et rétrograde diffusif) à certains modèles géophysiques contenant un terme de diffusion.

Published online:
DOI: 10.5802/afst.1552
Auroux, Didier 1

1 Université Côte d’Azur, Inria, CNRS, LJAD, France
@article{AFST_2017_6_26_4_767_0,
     author = {Auroux, Didier},
     title = {Data assimilation for geophysical fluids},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {767--793},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     doi = {10.5802/afst.1552},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1552/}
}
TY  - JOUR
AU  - Auroux, Didier
TI  - Data assimilation for geophysical fluids
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2017
SP  - 767
EP  - 793
VL  - 26
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1552/
DO  - 10.5802/afst.1552
LA  - en
ID  - AFST_2017_6_26_4_767_0
ER  - 
%0 Journal Article
%A Auroux, Didier
%T Data assimilation for geophysical fluids
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2017
%P 767-793
%V 26
%N 4
%I Université Paul Sabatier, Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1552/
%R 10.5802/afst.1552
%G en
%F AFST_2017_6_26_4_767_0
Auroux, Didier. Data assimilation for geophysical fluids. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 767-793. doi : 10.5802/afst.1552. https://www.numdam.org/articles/10.5802/afst.1552/

[1] Amodei, L. Solution approchée pour un problème d’assimilation de données météorologiques avec prise en compte de l’erreur modèle, C. R. Acad. Sci. Paris, Ser. II, Volume 321 (1995), pp. 1087-1094

[2] Auroux, Didier Étude de différentes méthodes d’assimilation de données pour l’environnement, University of Nice - Sophia Antipolis (France) (2003) (Ph. D. Thesis)

[3] Auroux, Didier Generalization of the dual variational data assimilation algorithm to a nonlinear layered quasi-geostrophic ocean model, Inverse Probl., Volume 23 (2007) no. 6, pp. 2485-2503 | DOI | Zbl

[4] Auroux, Didier The Back and Forth Nudging algorithm applied to a shallow water model, comparison and hybridization with the 4D-VAR, Int. J. Numer. Methods Fluids, Volume 61 (2009) no. 8, pp. 911-929 | DOI | Zbl

[5] Auroux, Didier; Bansart, Patrick; Blum, Jacques An evolution of the Back and Forth Nudging for geophysical data assimilation: application to Burgers equation and comparisons, Inverse Probl. Sci. Eng., Volume 21 (2013) no. 3, pp. 399-419 | DOI | Zbl

[6] Auroux, Didier; Blum, Jacques Data assimilation methods for an oceanographic problem, Multidisciplinary methods for analysis optimization and control of complex systems (Mathematics in Industry), Volume 6, Springer, 2004 | Zbl

[7] Auroux, Didier; Blum, Jacques Back and forth nudging algorithm for data assimilation problems, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 12, pp. 873-878 | DOI | Zbl

[8] Auroux, Didier; Blum, Jacques A nudging-based data assimilation method for oceanographic problems: the Back and Forth Nudging (BFN) algorithm, Nonlin. Proc. Geophys., Volume 15 (2008), pp. 305-319 | DOI

[9] Auroux, Didier; Blum, Jacques; Nodet, Maëlle Diffusive Back and Forth Nudging algorithm for data assimilation, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 15-16, pp. 849-854 | DOI | Zbl

[10] Auroux, Didier; Bonnabel, Silvère Symmetry-based observers for some water-tank problems, IEEE Trans. Autom. Contr., Volume 56 (2011) no. 5, pp. 1046-1058 | DOI | Zbl

[11] Auroux, Didier; Nodet, Maëlle The Back and Forth Nudging algorithm for data assimilation problems: theoretical results on transport equations, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 2, pp. 318-342 | DOI | Zbl

[12] Bennett, Andrew F. Inverse methods in physical oceanography, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1992, xvi+346 pages | Zbl

[13] Bennett, Andrew F. Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, 2002, xxii+234 pages | Zbl

[14] Blum, Jacques; Le Dimet, François-Xavier; Navon, I. Michael Data assimilation for geophysical fluids, Computational methods for the atmosphere and the oceans (Handbook of Numerical Analysis), Volume 14, Elsevier, 2009, pp. 385-441 | DOI

[15] Boilley, Alexandre; Mahfouf, Jean-françois Assimilation of low-level wind in a high resolution mesoscale model using the back and forth nudging algorithm, Tellus A, Volume 64 (2012), 18697 pages | DOI

[16] Broyden, Charles George A new double-rank minimization algorithm, Notices American Math. Soc., Volume 16 (1969), 670 pages

[17] Cane, M. A.; Kaplan, A.; Miller, R. N.; Tang, B.; Hackert, E. C.; Busalacchi, A. J. Mapping tropical Pacific sea level: data assimilation via a reduced state Kalman filter, J. Geophys. Res., Volume 101(C10) (1996), pp. 22599-22617 | DOI

[18] Carrassi, Alberto; Vannitsem, Stéphane Deterministic treatment of model error in geophysical data assimilation, Mathematical Paradigms of Climate Science (Springer INdAM Series), Volume 15, Springer (2016), pp. 175-213 | Zbl

[19] Courtier, Philippe Dual formulation of four-dimensional variational assimilation, Quart. J. R. Meteor. Soc., Volume 123 (1997), pp. 2449-2461 | DOI

[20] Courtier, Philippe; Talagrand, Olivier Variational assimilation of meteorological observations with the adjoint equations Part 2. Numerical results, Quart. J. Roy. Meteor. Soc., Volume 113 (1987), pp. 1329-1347 | DOI

[21] Donovan, Ashley; Mirrahimi, Mazyar; Rouchon, Pierre Back and Forth Nudging for quantum state reconstruction, 4th Int. Symp. Communications Control Signal Proc. (2010), pp. 1-5 | DOI

[22] Durbiano, Sophie Vecteurs caractéristiques de modèles océaniques pour la réduction d’ordre en assimilation de données, University of Grenoble I (France) (2001) (Ph. D. Thesis)

[23] Evensen, Geir Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model, J. Geophys. Res., Volume 97 (1992), pp. 17905-17924 | DOI

[24] Evensen, Geir Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., Volume 99 (1994) no. C5, pp. 10143-10162 | DOI

[25] Evensen, Geir The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, Volume 53 (2003), pp. 343-367 | DOI

[26] Evensen, Geir Data assimilation: the Ensemble Kalman Filter, Springer, 2009

[27] Fukumori, Ichiro Assimilation of Topex sea level measurements with a reduced-gravity, shallow water model of the tropical Pacific Ocean, J. Geophys. Res., Volume 100(C12) (1995), pp. 25027-25039 | DOI

[28] Fukumori, Ichiro; Jérôme, Benveniste; Wunsch, Carl; Haidvogel, Dale B. Assimilation of sea surface topography into an ocean circulation model using a steady state smoother, J. Phys. Oceanogr., Volume 23 (1993), pp. 1831-1855 | DOI

[29] Gauthier, Pierre; Courtier, Philippe; Moll, Patrick Assimilation of simulated wind lidar data with a Kalman filter, Mon. Wea. Rev., Volume 121 (1993), pp. 1803-1820 | DOI

[30] Gelb, Arthur Applied Optimal Estimation, MIT Press, 1974

[31] Ghil, Michael Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework, Dyn. Atmos. Oceans, Volume 13 (1989) no. 3-4, pp. 171-218 | DOI

[32] Ghil, Michael; Cohn, S.E.; Dalcher, A. Sequential estimation, data assimilation and initialization, The interaction between objective analysis and initialization (Publ. Meteor.), Volume 127, McGill University, 1982

[33] Ghil, Michael; Manalotte-Rizzoli, Paola Data assimilation in meteorology and oceanography, Adv. Geophys., Volume 33 (1991), pp. 141-265 | DOI

[34] Gilbert, Jean Charles; Lemaréchal, Claude Some numerical experiments with variable storage quasi-Newton algorithms, Math. Program., Volume 45 (1989), pp. 407-435 | DOI | Zbl

[35] Gourdeau, L.; Arnault, Sabine; Ménard, Y.; Merle, Jacques GEOSAT sea-level assimilation in a tropical Atlantic model using Kalman filter, Ocean. Acta, Volume 15 (1992), pp. 567-574

[36] Griewank, Andreas Automatic Differentiation, Princeton Companion to Applied Mathematics, Princeton University Press, 2014

[37] Hoke, James E.; Anthes, Richard A. The initialization of numerical models by a dynamic initialization technique, Mon. Wea. Rev., Volume 104 (1976), pp. 1551-1556 | DOI

[38] Holland, William R. The role of mesoscale eddies in the general circulation of the ocean, J. Phys. Oceanogr., Volume 8 (1978) no. 3, pp. 363-392 | DOI

[39] Houtekamer, P. L.; Mitchell, Herschel L. Data assimilation using an ensemble Kalman filter technique, Mon. Wea. Rev., Volume 126 (1998), pp. 796-811 | DOI

[40] Jazwinski, Andrew H. Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering, 64, Academic Press, 1970, xiv+376 pages | Zbl

[41] Kalnay, Eugenia Atmospheric modeling, data assimilation and predictability, Cambridge University Press, 2003, 341 pages

[42] Le Dimet, François-Xavier; Talagrand, Olivier Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, Volume 38 (1986) no. 2, pp. 97-110 | DOI

[43] Leghtas, Zaki; Mirrahimi, Mazyar; Rouchon, Pierre Observer-based quantum state estimation by continuous weak measurement, American Control Conference (ACC) (2011), pp. 4334-4339

[44] Lewis, J. M.; Derber, J. C. The use of adjoint equations to solve a variational adjustment problem with convective constraints, Tellus A, Volume 37 (1985), pp. 309-322 | DOI

[45] Lions, Jacques-Louis Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, 1968, xii+426 pages | Zbl

[46] Liu, Dong C.; Nocedal, Jorge On the limited memory BFGS method for large scale optimization, Math. Program., Volume 45 (1989) no. 3, pp. 503-528 | DOI | Zbl

[47] Louvel, Stéphane Étude d’un algorithme d’assimilation variationnelle de données à contrainte faible. Mise en œuvre sur le modèle océanique aux équations primitives MICOM, Université Paul Sabatier, Toulouse (France) (1999) (Ph. D. Thesis)

[48] Louvel, Stéphane Implementation of a dual variational algorithm for assimilation of synthetic altimeter data in the oceanic primitive equation model MICOM, J. Geophys. Res., Volume 106 (2001), pp. 9199-9212 | DOI

[49] Luenberger, D. Observers for multivariable systems, IEEE Trans. Autom. Contr., Volume 11 (1966), pp. 190-197 | DOI

[50] Luong, Bruno; Blum, Jacques; Verron, Jacques A variational method for the resolution of a data assimilation problem in oceanography, Inverse Probl., Volume 14 (1998), pp. 979-997 | DOI

[51] Mohammadi, Bijan; Pironneau, Olivier Applied shape optimization for fluids, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001, xvi+251 pages | Zbl

[52] Moireau, Philippe; Chapelle, Dominique Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 380-405 erratum in ibid 17 (2011), no. 2, p. 406-409 | DOI | Zbl

[53] Moore, Andrew M. Data assimilation in a quasi-geostrophic open-ocean model of the Gulf-Stream region using the adjoint model, J. Phys. Oceanogr., Volume 21 (1991), pp. 398-427 | DOI

[54] Nechaev, D. A.; Yaremchuk, M. I. Application of the adjoint technique to processing of a standard section data set: world ocean circulation experiment section S4 along 67 S in the Pacific Ocean, J. Geophys. Res., Volume 100(C1) (1994), pp. 865-879 | DOI

[55] Pedlosky, Joseph Geophysical fluid dynamics, Springer, 1979, xii+624 pages | Zbl

[56] Pham, Dinh Tuan; Verron, Jacques; Roubaud, Marie-Christine A Singular Evolutive Extended Kalman filter for data assimilation in oceanography, Inverse Probl., Volume 14 (1998), pp. 979-997 | DOI

[57] Ramdani, Karim; Tucsnak, Marius; Weiss, George Recovering the initial state of an infinite-dimensional system using observers, Automatica, Volume 46 (2010) no. 10, pp. 1616-1625 | DOI | Zbl

[58] Rostaing-Schmidt, N.; Hassold, E. Basic function representation of programs for automatic differentiation in the Odyssée system, High performance computing in the geosciences, Kluwer Academic Publishers, 1994, pp. 207-222

[59] Schröter, Jens; Seiler, Ulrike; Wenzel, Manfred Variational assimilation of GEOSAT data into an eddy-resolving model of the Gulf Stream area, J. Phys. Oceanogr., Volume 23 (1993), pp. 925-953 | DOI

[60] Sheinbaum, Julio; Anderson, David L. T. Variational assimilation of XBT data. Part I, J. Phys. Oceanogr., Volume 20 (1990), pp. 672-688 | DOI

[61] Stauffer, David R.; Bao, Jian-Wen Optimal determination of nudging coefficients using the adjoint equations, Tellus A, Volume 45 (1993), pp. 358-369 | DOI

[62] Stauffer, David R.; Seaman, Nelson L. Use of four dimensional data assimilation in a limited area mesoscale model - Part 1: Experiments with synoptic-scale data, Mon. Wea. Rev., Volume 118 (1990), pp. 1250-1277 | DOI

[63] Talagrand, Olivier Assimilation of observations, an introduction, Journal of the Met. Soc. of Japan, Volume 75 (1997) no. 1B, pp. 191-209 | DOI | Zbl

[64] Talagrand, Olivier; Courtier, Philippe Variational assimilation of meteorological observations with the adjoint vorticity equation. Part I: Theory, Quart. J. R. Meteor. Soc., Volume 113 (1987), pp. 1311-1328 | DOI

[65] Thacker, William Carlisle; Long, Robert Bryan Fitting dynamics to data, J. Geophys. Res., Volume 93 (1988), pp. 1227-1240 | DOI

[66] Veersé, F.; Auroux, Didier; Fisher, M. Limited-memory BFGS diagonal preconditioners for a data assimilation problem in meteorology, Optimization and Engineering, Volume 1 (2000) no. 3, pp. 323-339 | DOI

[67] Verron, Jacques; Gourdeau, L.; Pham, D. T.; Murtugudde, R.; Busalacchi, A. J. An extended Kalman filter to assimilate satellite altimeter data into a non-linear numerical model of the tropical Pacific Ocean: method and validation, J. Geophys. Res., Volume 104 (1999), pp. 5441-5458 | DOI

[68] Verron, Jacques; Holland, William R. Impact de données d’altimétrie satellitaire sur les simulations numériques des circulations générales océaniques aux latitudes moyennes, Ann. Geophys., Volume 7 (1989) no. 1, pp. 31-46

[69] Vidard, Arthur Vers une prise en compte des erreurs modèle en assimilation de données 4D-variationnelle - Application à un modèle réaliste d’océan, University of Grenoble I (France) (2001) (Ph. D. Thesis)

[70] Vidard, Arthur; Le Dimet, François-Xavier; Piacentini, A. Determination of optimal nudging coefficients, Tellus A, Volume 55 (2003), pp. 1-15 | DOI

[71] Zou, X.; Navon, I. Michael; Le Dimet, François-Xavier An optimal nudging data assimilation scheme using parameter estimation, Quart. J. Roy. Meteor. Soc., Volume 118 (1992), pp. 1163-1186 | DOI

Cited by Sources: