Let be a field and be a subring of . In the present note, we present the main applications of the so called ultrafilter topology on the space , introduced in the previous Part I. After recalling that is a spectral space, we give an explicit description of as the prime spectrum of a ring (even in the case when the quotient field of is a proper subfield of ). Moreover, we provide applications of the topological material previously introduced to the study of representations of integrally closed domains and valuative semistar operations.
DOI : 10.5802/acirm.45
Finocchiaro, Carmelo Antonio 1 ; Fontana, Marco 2
@article{ACIRM_2010__2_2_111_0,
author = {Finocchiaro, Carmelo Antonio and Fontana, Marco},
title = {Some applications of the ultrafilter topology on spaces of valuation domains, {Part} {II}},
journal = {Actes des rencontres du CIRM},
pages = {111--114},
year = {2010},
publisher = {CIRM},
volume = {2},
number = {2},
doi = {10.5802/acirm.45},
zbl = {1439.13014},
language = {en},
url = {https://www.numdam.org/articles/10.5802/acirm.45/}
}
TY - JOUR AU - Finocchiaro, Carmelo Antonio AU - Fontana, Marco TI - Some applications of the ultrafilter topology on spaces of valuation domains, Part II JO - Actes des rencontres du CIRM PY - 2010 SP - 111 EP - 114 VL - 2 IS - 2 PB - CIRM UR - https://www.numdam.org/articles/10.5802/acirm.45/ DO - 10.5802/acirm.45 LA - en ID - ACIRM_2010__2_2_111_0 ER -
%0 Journal Article %A Finocchiaro, Carmelo Antonio %A Fontana, Marco %T Some applications of the ultrafilter topology on spaces of valuation domains, Part II %J Actes des rencontres du CIRM %D 2010 %P 111-114 %V 2 %N 2 %I CIRM %U https://www.numdam.org/articles/10.5802/acirm.45/ %R 10.5802/acirm.45 %G en %F ACIRM_2010__2_2_111_0
Finocchiaro, Carmelo Antonio; Fontana, Marco. Some applications of the ultrafilter topology on spaces of valuation domains, Part II. Actes des rencontres du CIRM, Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières, Tome 2 (2010) no. 2, pp. 111-114. doi: 10.5802/acirm.45
[1] A. Fabbri, Integral domains with a unique Kronecker function ring, J. Pure Appl. Algebra 215 (2011), 1069-1084. | Zbl | MR | DOI
[2] C. A. Finocchiaro, M. Fontana, Some applications of the ultrafilter topology on spaces of valuation domains, Part I, this volume. | DOI
[3] C. A. Finocchiaro, M. Fontana, K. A. Loper, Ultrafilter and constructible topologies on spaces of valuation domains, submitted. | Zbl | MR | DOI
[4] M. Fontana, K. A. Loper, Cancellation properties in ideal systems: a classification of e.a.b. semistar operations, J. Pure Appl. Algebra 213 (2009), no. 11, 2095–2103. | Zbl | MR | DOI
[5] F. Halter–Koch, Kronecker function rings and generalized integral closures, Comm. Algebra 31 (2003), 45-49. | Zbl | MR | DOI
[6] Melvin Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. | Zbl | MR | DOI
Cité par Sources :





