Let be a one-dimensional analytically irreducible ring and let be an integral ideal of . We study the relation between the irreducibility of the ideal in and the irreducibility of the corresponding semigroup ideal . It turns out that if is irreducible, then is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition of a nonzero ideal.
DOI : 10.5802/acirm.40
Keywords: Numerical semigroup, canonical ideal, irreducible ideal.
Barucci, Valentina 1 ; Khouja, Faten 2
@article{ACIRM_2010__2_2_91_0,
author = {Barucci, Valentina and Khouja, Faten},
title = {Irreducibility of ideals in a one-dimensional analytically irreducible ring},
journal = {Actes des rencontres du CIRM},
pages = {91--93},
year = {2010},
publisher = {CIRM},
volume = {2},
number = {2},
doi = {10.5802/acirm.40},
zbl = {1434.13005},
language = {en},
url = {https://www.numdam.org/articles/10.5802/acirm.40/}
}
TY - JOUR AU - Barucci, Valentina AU - Khouja, Faten TI - Irreducibility of ideals in a one-dimensional analytically irreducible ring JO - Actes des rencontres du CIRM PY - 2010 SP - 91 EP - 93 VL - 2 IS - 2 PB - CIRM UR - https://www.numdam.org/articles/10.5802/acirm.40/ DO - 10.5802/acirm.40 LA - en ID - ACIRM_2010__2_2_91_0 ER -
%0 Journal Article %A Barucci, Valentina %A Khouja, Faten %T Irreducibility of ideals in a one-dimensional analytically irreducible ring %J Actes des rencontres du CIRM %D 2010 %P 91-93 %V 2 %N 2 %I CIRM %U https://www.numdam.org/articles/10.5802/acirm.40/ %R 10.5802/acirm.40 %G en %F ACIRM_2010__2_2_91_0
Barucci, Valentina; Khouja, Faten. Irreducibility of ideals in a one-dimensional analytically irreducible ring. Actes des rencontres du CIRM, Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières, Tome 2 (2010) no. 2, pp. 91-93. doi: 10.5802/acirm.40
[1] V. Barucci, Decompositions of ideals into irreducible ideals in numerical semigroups. Journal of Commutative Algebra 2 (2010), 281-294. | Zbl | MR | DOI
[2] V. Barucci and R. Fröberg, One-dimensional almost Gorenstein rings. J. Algebra 188 (1997), 418-442. | Zbl | MR | DOI
[3] J. Jäger, Langenberechnung und kanonische Ideale in eindimensionalen Ringen. Arch. Math. 29 (1977), 504-512. | Zbl | DOI
[4] W. Vasconcelos, Computational Methods in Commutative Alegebra and Algebraic Geometry. Springer-Verlag, 1998. | DOI
[5] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry. Birkhauser, 1984. | DOI
[6] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra. Springer-Verlag, 2005. | Zbl | DOI
Cité par Sources :





